DejaGnu

The GNU Testing Framework

Rob Savoye
Free Software Foundation

DejaGnu: The GNU Testing Framework
by Rob Savoye

1.4.4 Edition
Copyright © 2002 by Free Software Foundation, Inc.

Revision History

Revision 0.6.2 2002-7-16 Revised by: rob@welcomehome.org
Add new tutorial as a new chapter.

Revision 0.6.1 2001-2-16 Revised by: rob@welcomehome.org
Add info on the new dejagnu.h file.

Revision 0.6 ~ 2001-2-16 Revised by: rob@welcomehome.org
Updated for new release.

Revision 0.5 2000-1-24 Revised by: rob@welcomehome.org
Initial version after conversion to DocBook.

Table of Contents

Abstract i
1. Overview 1
What is DeJaGIIU ?.....ououiviiiiiiiiiitiieeicece 1
What’s New In This Releaseccccccoeeiiiiiiiiiiiiiniiiiiiiicccccceceene 1
WINAOWS SUPPOTt ..ot 2

Design GOAlS ..ottt 2

A POSIX conforming test frameworkccc.coveieiiiniiiccenceccc 2

2. Getting DejaGnu up and running 5
Test your installation............ccoviiiiiiiiii 5
TWINAOWS ..ttt 5

Getting the source code for the calc example..........cccoooiriiiiiiiiiinnene. 5

Create a minimal project, €.8. CalCc.ccovuvuririrririnincccrcceeecee e 6

A simple project without the GNU autotools...........ccccccceeiininiinnninninnnn. 6

Using autoconf/autoheader/automake..........cccccooviiiiiiinninniiinne, 6

Our first automated tests...........ooviiiiiiiiiii 8
Running the test for the calc example..........ccccooiiiiiiiiiiiniiiiiiie, 8

The various config files or how to avoid warningscccccceeoeveveireieinne. 9

When trouble Strikes ... 10

Testing “Hello world” 1ocallycccccoviiiiiiiinnininniiiiiccccccccccen, 10

A first 1€mMOte teSt.....oviiiiiiic 11
Setup telnet to your own host........c.cccvuviiiiiinncccccceeeeeees 11

A test case for login via telnet..........cccooovoiiiii 11

Remote testing “Hello World”cccoouoiiiiiii 12
Transferring files from/to the target..........cocoovvnniiiicccicccccccens 13

Preparing for crosscompilation ..o, 13

Remote testing of Calcoeviiiiieiiii 14

Using Windows as host and vxWorks as target...........cccccoeveiiviiiienncnnnns 14

3. Running Tests 15
Make ChecK.......coviiiiiii e 15
RUNEEST . 15
Output States......c.cueviviiiicc 15

INVOKIing RUNEStoucviiiiiiiici e 16

Common OPLIONSccovvieiiiiiiiiic s 19

The files DejaGnu produces.ccceeiiiiiiiniiiiiiiiiniicee s 20
Summary File ... 20

LOE File...ooi e 20

Debug Log File.......oooiiiiiiiiiiiiiiiice 21

4. Customizing DejaGnu 23
Local Config File........cccooiiiiiiiiiiiiiiiic e 23
Global Config File ..o 24
Board Config File.........ocoiiiiiiiiiiieceeee e 25
Remote Host TeStINgccovviiiiiiiiiiiiiiccii s 26
Config File Values.........cccouiriiiiiiiiic s 28
Command Line Option Variables...........ccoovniiiiiininiiniiiines 28

Personal Config File ... 29

5. Extending DejaGnu 31
Adding A New TeStSUIE.........ccoeueuiuiiiiiiiiiiiirrerr e 31
Adding A NeW TOOL.......ocoiiiiiiiiiiii e 31
Adding A New Target ..o 34
Adding A New Board.........cccccoiiiiiiiiiiiiicerr e 34
Board Config File Values.........cccccoouiiiiiiiiiiiiiiicccc s 35
WIiting A Test Case.......couvirieiiiiicicc s 37
Debugging A Test Casecccovvuiiiiniiiiiiiiiic s 38
Adding A Test Case To A TeStsuite.........cccoovuvviviiiiniiiniiiiiiiicccccce 39
Hints On Writing A Test Casecccoerieiiiieieiiicece s 39
Special variables used by test Cases.cccovuvuviririniininiiiiicc e 40

iii

v

6. Unit Testing

What Is Unit TESHNG ?...c.couimiiiiiiiiiiiiiiiicce e
The dejagnu.h Header File..........ccoooiiiiiiii s

7. Reference

Obtaining DeJaGIiUcciuiuiiiiiiiiiiiiiiiiiic e
JHa1CT =11 =X 6o) o WS RRRORRNE

Configuring DejaGnU..........cccccuiuiiiiiiiinininiiiincccceccee e
Installing DeJaGU.........cccciuiiiiiiiiiiiiiiicii e

BUIItIN PrOCEAULES ...ttt e e senaeeeaneeennes

Core Internal Procedures...........ccooveiiiiinininiieeicc e
Procedures For Remote Communicationcccoeceviiiiiiiiiiiciiiiiennn,
Procedures For Using Utilities to Connect.........c.ccouoiueveiineieiiniciiinne,
Procedures For Target Boards..........ccccocoviiiiiiinininininiiiiicccccccccceens
Target Database Procedurescooouoiiimiiiiiicc
Platform Dependant Procedures.............cooovuviiiviniiniiniiniiininn,
Utility ProCedUIES........cviuiiieieiiiciciccicc e
Libgloss, A Free BSP.........cccccociiiiiiiiiiiiiiiiiicces
Procedures for debugging your Tcl code.ccoovuviiiiiniiiiniiniiiinne,

FAIE AP ..
8. Unit Testing API
C Unit Testing APTc.ccoiiiiiiiiiiiicc s

PaSS FUNCHON.coiieiiiiiieeeeee ettt et eessaae e e s esnnees
Fall FUNCHON ...ttt saaaeas
Untested FUNCHONocuveieeeieeeeee et s e s enee e
UNTresolved FUNCHONocuveiieeeieeeeeeeeeeee ettt ettt saneas
TOtAlS FUNCHON ...ttt e saneas

C++ Unit Testing APL......cccooiiiiiiiiiiiiiiiiicci s

Pass METNOMooooueieiieeeeeeeeee ettt ettt e et eeerae e e saae e snaeas
) S LY 1= 1 4 Vo Yo F R
Untested Methodvovoviiieieeeeeeeeeeeeeeee et
UnNresolved MeEthOdoo.vviieiiieeeeeeeeeeeee ettt ettt saaeas
1 16] =1 KLY (<31 4 Vo Yo KRR

Abstract

This document describes the functionality of DejaGnu, the testing framework of the
GNU project. DejaGnu is written in Expect, which uses Tcl as a command language.
Expect acts as a very programmable shell. As with other Unix command shells, you
can run any program, but once the program is started, your test script has pro-
grammable control over its input and output. This does not just apply to the pro-
grams under test; expect can also run any auxiliary program, such as diff or sh, with
full control over its input and output.

DejaGnu itself is merely a framework for the creation of testsuites. Testsuites are dis-
tributed with each application.

Abstract

ii

Chapter 1. Overview

What is DejaGnu ?

DejaGnu is a framework for testing other programs. Its purpose is to provide a single
front end for all tests. Think of it as a custom library of Tcl procedures crafted to sup-
port writing a test harness. A Test Harness is the testing infrastructure that is created
to support a specific program or tool. Each program can have multiple testsuites, all
supported by a single test harness. DejaGnu is written in Expect, which in turn uses
Tcl -- Tool command language. There is more information on Tcl at the Scriptics' web
site and the Expect web site is at NIST?.

Julia Menapace first coined the term “DejaGnu” to describe an earlier testing frame-
work at Cygnus Support she had written for GDB. When we replaced it with the
Expect-based framework, it was like DejaGnu all over again. More importantly, it was
also named after my daughter, Deja Snow Savoye’® (now 13 years old as of September
2003), who was a toddler during DejaGnu’s beginnings.

DejaGnu offers several advantages for testing:

« The flexibility and consistency of the DejaGnu framework make it easy to write
tests for any program, with either batch oriented, or interactive programs.

» DejaGnu provides a layer of abstraction which allows you to write tests that are
portable to any host or target where a program must be tested. For instance, a test
for GDB can run from any supported host system on any supported target system.
DejaGnu runs tests on many single board computers, whose operating software
ranges from a simple boot monitor to a real-time OS.

« All tests have the same output format. This makes it easy to integrate testing into
other software development processes. DejaGnu’s output is designed to be parsed
by other filtering script and it is also human readable.

« Using Tcl and Expect, it’s easy to create wrappers for existing testsuites. By in-
corporating existing tests under DejaGnu, it’s easier to have a single set of report
analyse programs..

Running tests requires two things: the testing framework and the testsuites them-
selves. Tests are usually written in Expect using Icl, but you can also use a Tcl script
to run a testsuite that is not based on Expect. Expect script filenames conventionally
use .exp as a suffix; for example, the main implementation of the DejaGnu test driver
is in the file runtest.exp.)

What's New In This Release

This release has a number of substantial changes over version 1.3. The most visible
change is that the version of Expect and Tcl included in the release are up-to-date
with the current stable net releases. The biggest change is years of modifications to
the target configuration system, used for cross testing. While this greatly improved
cross testing, is has made that subsystem very complicated. The goal is to have this
entirely rewritten using iTcl by the next release. Other changes are:

 More built-in support for building target binaries with the correct linker flags. Cur-
rently this only works with GCC as the cross compiler, preferably with a target
supported by Libgloss.

« Lots of little bug fixes from years of heavy use at Cygnus Solutions.
 DejaGnu now uses Automake for Makefile configuration.

+ Updated documentation, now in SGML (using the free GNU DocBook tools*) for-
mat.

Chapter 1. Overview

» Windows support. There is beta level support for Windows that is still a work in
progress. This requires the Cygwin’ POSIX subsystem for Windows.

Windows Support

To use DejaGnu on Windows, you need to first install the Cygwin® release. This works
as of the B20.1 release. Cygwin is a POSIX system for Windows. This covers both
utility programs and a library that adds POSIX system calls to Windows. Among
them is pseudo tty support for Windows that emulates the POSIX pty standard. The
latest Cygwin is always available from this location’. This works well enough to run
"make check” of the GNU development tree on Windows after a native build. But the
nature of ptys on Windows is still evolving. Your mileage may vary.

Design Goals

DejaGnu grew out of the internal needs of Cygnus Solutions, the company formerly
known as Cygnus Support. Cygnus maintained and enhanced a variety of free pro-
grams in many different environments and we needed a testing tool that:

+ was useful to developers while fixing bugs;

 automated running many tests during a software release process;
» was portable among a variety of host computers;

« supported cross-development testing;

+ permitted testing interactive programs, like GDB; and
 permitted testing batch oriented programs, like GCC.

Some of the requirements proved challenging. For example, interactive programs
do not lend themselves very well to automated testing. But all the requirements are
important: for instance, it is imperative to make sure that GDB works as well when
cross-debugging as it does in a native configuration.

Probably the greatest challenge was testing in a cross-development environment.
Most cross-development environments are customized by each developer. Even
when buying packaged boards from vendors there are many differences. The
communication interfaces vary from a serial line to Ethernet. DejaGnu was designed
with a modular communication setup, so that each kind of communication can be
added as required and supported thereafter. Once a communication procedure is
coded, any test can use it. Currently DejaGnu can use rsh, rlogin, telnet, tip, kermit
and mondfe for remote communications.

A POSIX conforming test framework

DejaGnu conforms to the POSIX 1003.3 standard for test frameworks. Rob Savoye
was a member of that committee.

The POSIX standard 1003.3 defines what a testing framework needs to provide, in or-
der to permit the creation of POSIX conformance test suites. This standard is primar-
ily oriented to running POSIX conformance tests, but its requirements also support
testing of features not related to POSIX conformance. POSIX 1003.3 does not specify a
particular testing framework, but at this time there is only one other POSIX conform-
ing test framework: TET. TET was created by Unisoft for a consortium comprised of
X/Open, Unix International and the Open Software Foundation.

The POSIX documentation refers to assertions. An assertion is a description of behav-
ior. For example, if a standard says “The sun shall shine”, a corresponding assertion

PASS

XFAIL

FAIL

Chapter 1. Overview

might be “The sun is shining.” A test based on this assertion would pass or fail de-
pending on whether it is day or night. It is important to note that the standard being
tested is never 1003.3; the standard being tested is some other standard, for which
the assertions were written.

As there is no testsuite to test testing frameworks for POSIX 1003.3 conformance,
verifying conformance to this standard is done by repeatedly reading the standard
and experimenting. One of the main things 1003.3 does specify is the set of allowed
output messages and their definitions. Four messages are supported for a required
feature of POSIX conforming systems and a fifth for a conditional feature. DejaGnu
supports the use of all five output messages. In this sense a testsuite that uses exactly
these messages can be considered POSIX conforming. These definitions specify the
output of a test case:

A test has succeeded. That is, it demonstrated that the assertion is true.

POSIX 1003.3 does not incorporate the notion of expected failures, so PASS, in-
stead of XPASS, must also be returned for test cases which were expected to fail
and did not. This means that PASS is in some sense more ambiguous than if
XPASS is also used.

A test has produced the bug it was intended to capture. That is, it has demon-
strated that the assertion is false. The FAIL message is based on the test case only.
Other messages are used to indicate a failure of the framework. As with PASS,
POSIX tests must return FAIL rather than XFAIL even if a failure was expected.

UNRESOLVED

A test produced indeterminate results. Usually, this means the test executed in
an unexpected fashion; this outcome requires that a human being go over results,
to determine if the test should have passed or failed. This message is also used
for any test that requires human intervention because it is beyond the abilities
of the testing framework. Any unresolved test should resolved to PASS or FAIL
before a test run can be considered finished.

Note that for POSIX, each assertion must produce a test result code. If the test
isn’t actually run, it must produce UNRESOLVED rather than just leaving that
test out of the output. This means that you have to be careful when writing tests
to not carelessly use Tcl commands like return---if you alter the flow of control of
the Tcl code you must insure that every test still produces some result code.

Here are some of the ways a test may wind up UNRESOLVED:

* A test’s execution is interrupted.

* A test does not produce a clear result. This is usually because there was an ER-
ROR from DejaGnu while processing the test, or because there were three or more
WARNING messages. Any WARNING or ERROR messages can invalidate the out-
put of the test. This usually requires a human being to examine the output to de-
termine what really happened---and to improve the test case.

* A test depends on a previous test, which fails.

« The test was set up incorrectly.

Chapter 1. Overview

UNTESTED

A test was not run. This is a place-holder, used when there is no real test case
yet.

The only remaining output message left is intended to test features that are specified
by the applicable POSIX standard as conditional:

UNSUPPORTED

Notes

There is no support for the tested case. This may mean that a conditional fea-
ture of an operating system, or of a compiler, is not implemented. DejaGnu also
uses this message when a testing environment (often a “bare board” target) lacks
basic support for compiling or running the test case. For example, a test for the
system subroutine gethostname would never work on a target board running only
a boot monitor.

DejaGnu uses the same output procedures to produce these messages for all test-
suites and these procedures are already known to conform to POSIX 1003.3. For a
DejaGnu testsuite to conform to POSIX 1003.3, you must avoid the setupxfail} pro-
cedure as described in the PASS section above and you must be careful to return
UNRESOLVED where appropriate, as described in the UNRESOLVED section above.

http:/ /www.scriptics.com

http:/ /expect.nist.gov

mailto:deja@welcomehome.org

http:/ /nis-www.lanl.gov/~rosalia/mydocs/docbook-intro.html
http:/ /www.cygwin.com/

http:/ /www.cygwin.com/

N o U=

http:/ /www.cygwin.com/

Chapter 2. Getting DejaGnu up and running

This chapter was originally written by Niklaus Giger (ngiger@mus.ch) because he
lost a week to figure out how DejaGnu works and how to write a first test.

Follow these instructions as closely a possible in order get a good insight into how
DejaGnu works, else you might run into a lot of subtle problems. You have been
warned.

It should be no big problems installing DejaGnu using your package manager or from
the source code. Under a Debian/GNU/Linux systems just type (as root)

apt-get dejagnu

. These examples were run on a primary machine with a AMD K6 and a Mac Power-
book G3 serving as a remote target.

The tests for Windows were run under Windows NT using the actual Cygwin version
(1.3.x as of October 2001). It’s target system was a PPC embedded system running
vxWorks.

Test your installation

Create a new user called "dgt" (DejaGnuTest), which uses bash as it login shell. PS1
must be set to "\u:\w\$ " in its ~/.bashrc. Login as this user, create an empty direc-
tory and change the working directory to it. e.g

dgt:~$ mkdir ~/dejagnu.test
dgt:~$ cd ~/dejagnu.test

Now you are ready to test DejaGnu’s main program called runtest. The expecteted
output is shown

Example 2-1. Runtest output in a empty directory

dgt:~/dejagnu.test$ runtest

WARNING: Couldn't find the global config file.

WARNING: No tool specified Test

Run By dgt on Sun Nov 25 17:07:03 2001 Native configuration is i586-pc-linux-gnu

=== tests ===

Schedule of variations: unix

Running target unix Using /usr/share/dejagnu/baseboards/unix.exp as board description file for target.
Using /usr/share/dejagnu/config/unix.exp as generic interface file for target.

ERROR: Couldn't find tool config file for unix.

=== Summary ===

We will show you later how to get rid of all the WARNING- and ERROR-messages.
The files testrun.sum and testrun.log have been created, which do not interest us at
this point. Let’s remove them.

:~/dejagnu.test$ rm testrun.sum testrun.log

Windows

On Windows systems DejaGnu is part of a port of a lot of Unix tools to the Win-
dows OS, called Cygwin. Cygwin may be downloaded and installed from a mirror
of http:/ /www.cygwin.com/. All examples were also run on Windows NT. If noth-
ing is said, you can assume that you should get the same output as on a Unix system.

You will need a telnet daemon if you want to use a Windows box as a remote target.
There seems to be a freeware telnet daemon at http:/ /www.fictional.net/.

Chapter 2. Getting DejaGnu up and running

Getting the source code for the calc example

If you are running a Debian distribution you can find the examples under
/usr/share/doc/dejagnu/examples. These examples seem to be missing in Red
Hat’s RPM. In this case download the sources of DejaGnu and adjust the pathes to
the DejaGnu examples accordingly.

Create a minimal project, e.g. calc

In this section you will to start a small project, using the sample application calc,
which is part of your DejaGnu distribution

A simple project without the GNU autotools

The runtest program can be run standalone. All the autoconf/automake support is
just cause those programs are commonly used for other GNU applications. The key
to running runtest standalone is having the local site.exp file setup correctly, which
automake does.

The generated site.exp should like like:

set tool calc
set srcdir .
set objdir /home/dgt/dejagnu.test

Using autoconf/autoheader/automake

We have to prepare some input file in order to run autocon and automake. There is
book “GNU autoconf, automake and libtool” by Garry V. Vaughan, et al. NewRider,
ISBN 1-57870-190-2 which describes this process thoroughly.

From the calc example distributed with the DejaGnu documentation you should copy
the program file itself (calc.c) and some additional files, which you might examine a
little bit close to derive their meanings.

dgt:~/dejagnu.test$ cp -r /usr/share/doc/dejagnu/examples/calc/\
{configure.in,Makefile.am,calc.c,testsuite} .

In Makemake.am note the presence of the AUTOMAKE_OPTIONS = dejagnu. This
option is needed.

Run aclocal to generate aclocal.m4, which is a collection of macros needed by config-
ure.in

dgt:~/dejagnu.test$ aclocal

autoconf is another part of the auto-tools. Run it to generate configure based on in-
formation contained in configure.in.

dgt:~/dejagnu.test$ autoconf
autoheader is another part of the auto-tools. Run it to generate calc.h.in.
dgt:~/dejagnu.test$ autoheader

The Makefile.am of this example was developed as port of the DejaGnu distribu-
tion. Adapt Makefile.am for this test. Replace the line “#noinst PROGRAMS = calc”
to “bin_PROGRAMS = calc”. Change the RUNTESTDEFAULTFLAGS from “$$sr-
cdir/testsuite” to “./testsuite”.

Chapter 2. Getting DejaGnu up and running

Running automake at this point contains a series of warning in its output as shown
in the following example:

Example 2-2. Sample output of automake with missing files

dgt:~/dejagnu.test$ automake --add-missing

automake: configure.in: installing ‘./install-sh’

automake: configure.in: installing ‘./mkinstalldirs’

automake: configure.in: installing ‘./missing’

automake: Makefile.am: installing ‘./INSTALL’

automake: Makefile.am: required file *./NEWS’ not found
automake: Makefile.am: required file ‘./README’ not found
automake: Makefile.am: installing ‘./COPYING’

automake: Makefile.am: required file ‘/AUTHORS' not found
automake: Makefile.am: required file ‘./ChangelLog’ not found
configure.in: 4: required file ‘./calc.h.in” not found
Makefile.am:6: required directory ./doc does not exist

Create a empty directory doc and empty files INSTALL, NEWS, README, AU-
THORS, ChangeLog and COPYING. The default COPYING will point to the GNU
Public License (GPL). In a real project it would be time to add some meaningfull text
in each file.

Adapt calc to your environment by calling configure.

Example 2-3. Sample output of configure

dgt:~/dejagnu.test$./configure

creating cache ./config.cache

checking whether to enable maintainer-specific portions of Makefiles... no
checking for a BSD compatible install... /usr/bin/install -c
checking whether build environment is sane... yes

checking whether make sets ${MAKE}... yes

checking for working aclocal... found

checking for working autoconf... found

checking for working automake... found

checking for working autoheader... found

checking for working makeinfo... found

checking for gcc... gcc checking whether the C compiler (gcc) works... yes
checking whether the C compiler (gcc) is a cross-compiler... no
checking whether we are using GNU C... yes

checking whether gcc accepts -g... yes

checking for a BSD compatible install... /usr/bin/install -c
checking how to run the C preprocessor... gcc -E

checking for stdlib.h... yes

checking for strcmp... yes

updating cache ./config.cache

creating ./config.status

creating Makefile creating calc.h

If you are familiar with GNU software, this output should not contain any surprise
to you. Any errors should be easy to fix for such a simple program.

Build the calc executable:

Example 2-4. Sample output building calc

dgt:~/dejagnu.test$ make
gcc -DHAVE_CONFIG_H -I. -I. -I. -g -O2 -c calc.c
gcc -g -0O2 -0 calc calc.o

You prepared a few files and then called some commands. Respecting the right order
assures a automatic and correctly compiled calc program. The following example
resumes the correct order.

7

Chapter 2. Getting DejaGnu up and running

Example 2-5. Creating the calc program using the GNU autotools

dgt:~/dejagnu.test$ aclocal
dgt:~/dejagnu.test$ autoconf
dgt:~/dejagnu.test$ autoheader
dgt:~/dejagnu.test$ automake --add-missing
dgt:~/dejagnu.test$./configure
dgt:~/dejagnu.test$ make

Play with calc and verify whether it works correctly. A sample session might look
like this:

dgt:~/dejagnu.test$./calc
calc: version

Version: 1.1

calc: add 3 4

7

calc: multiply 3 4
12

calc: multiply 2 4
12

calc: quit

Look at the intentional bug that 2 times 4 equals 12.

The tests run by DejaGnu need a file called site.exp, which is automatically generated
if we call “make site.exp”. This was the purpose of the “AUTOMAKE_OPTIONS =
dejagnu” in Makefile.am.

Example 2-6. Sample output generating a site.exp

dgt: make site.exp
dgt:~/dejagnu.test$ make site.exp
Making a new site.exp file...

Ouir first automated tests

Running the test for the calc example

Now we are ready to call the automated tests

Example 2-7. Sample output of runtest in a configured directory

dgt:~/dejagnu.test$ make check

make check-DEJAGNU

make[1]: Entering directory ‘/home/dgt/dejagnu.test’ srcdir="cd . && pwd‘; export srcdir; \
EXPECT=expect; export EXPECT; \ runtest=runtest; \

if /bin/sh -c "$runtest --version" > /dev/null 2>&1; then \
$runtest --tool calc CALC='pwd‘/calc --srcdir ./testsuite ; \
else echo "WARNING: could not find \'runtest™ 1>&2; :)\
fi

WARNING: Couldn't find the global config file.
WARNING: Couldn’t find tool init file

Test Run By dgt on Sun Nov 25 21:42:21 2001

Native configuration is i586-pc-linux-gnu

=== calc tests ===

Schedule of variations:
unix

Chapter 2. Getting DejaGnu up and running

Running target unix

Using /usr/share/dejagnu/baseboards/unix.exp as board description file for target.
Using /usr/share/dejagnu/config/unix.exp as generic interface file for target.
Using ./testsuite/config/unix.exp as tool-and-target-specific interface file.

Running ./testsuite/calc.test/calc.exp ...

FAIL: multiply2 (bad match)

=== calc Summary ===

of expected passes 5

of unexpected failures 1

/home/Dgt/dejagnu.test/calc version Version: 1.1

make[1]: *** [check-DEJAGNU] Fehler 1

make[1l]: Leaving directory ‘/home/Dgt/dejagnu.test’ make: *** [check-am] Fehler 2

Did you see the line “FAIL:“? The test cases for calc catch the bug in the calc.c file. Fix
the error in calc.c later as the following examples assume a unchanged calc.c.

Examine the output files calc.sum and calc.log. Try to understand the testcases writ-
ten in ~/dejagnu.test/testsuite/calc.test/calc.exp. To understand Expect you might
take a look at the book "Exploring Expect”, which is an excellent resource for learning
and using Expect. (Pub: O'Reilly, ISBN 1-56592-090-2) The book contains hundreds
of examples and also includes a tutorial on Tcl. Exploring Expect is 602 pages long.

The various config files or how to avoid warnings

DejaGnu may be customized by each user. It first searches for a file called ~/.dejag-
nurc. Create the file ~/.dejagnurc and insert the following line:

puts "I am ~/.dejagnurc"

Rerun make check. Test whether the output contains "I am ~/.dejagnurc". Create
~/my_dejagnu.exp and insert the following line:

puts "I am ~/my_dejagnu.exp"
In a Bash-Shell enter
dgt:~/dejagnu.test$ export DEJAGNU=~/my_dejagnu.exp

Run “make check” again. The output should not contain “WARNING: Couldn’t find
the global config file.”. Create the sub-directory lib. Create the file “calc.exp” in it and
insert the following line:

puts "I am lib/calc.exp”

The last warning “WARNING: Couldn’t find tool init file” should not be part
of the output of make check. Create the directory ~/boards. Create the file
~/boards/standard.exp and insert the following line:

puts "I am boards/standard.exp”

If the variable DEJAGNU is still not empty then the (abbreviated) output of “make
check” should look like this:

Example 2-8. Sample output of runtest with the usual configuration files

dgt:~/dejagnu.test$ make check
<...>

fi

I am ~/.dejagnurc

I am ~/my_dejagnu.exp

Chapter 2. Getting DejaGnu up and running

10

I am lib/calc.exp
Test Run By dgt on Sun Nov 25 22:19:14 2001
Native configuration is i586-pc-linux-gnu

=== calc tests ===
Using /home/Dgt/boards/standard.exp as standard board description\
file for build.
| am ~/boards/standard.exp
Using /home/Dgt/boards/standard.exp as standard board description\
file for host.
I am ~/boards/standard.exp

Schedule of variations:
unix

Running target unix

Using /home/Dgt/boards/standard.exp as standard board description\
file for target.

| am ~/boards/standard.exp

Using /usr/share/dejagnu/baseboards/unix.exp as board description file\
for target.

<...>

It is up to you to decide when and where to use any of the above mentioned con-
fig files for customizing. This chapters showed you where and in which order the
different config files are run.

When trouble strikes

Calling runtest with the "-v’-flag shows you in even more details which files are
searched in which order. Passing it several times gives more and more details.

Example 2-9. Displaying details about runtest execution

runtest -v -v -v --tool calc CALC=‘pwd‘/calc --srcdir ./testsuite

Calling runtest with the "--debug’-flag logs a lot of details to dbg.log where you can
analyse it afterwards.

In all test cases you can temporary adjust the verbosity of information by adding
the following Tcl-command to any tcl file that gets loaded by dejagnu, for instance,
~/.dejagnurc:

set verbose 9

Testing “Hello world” locally

This test checks, whether the built-in shell command “echo Hello
world” will really write “Hello world” on the console. Create the file
~/dejagnu.test/testsuite/calc.test/local_echo.exp. It should contain the following
lines

Example 2-10. A first (local) test case

set test "Local Hello World"
send "echo Hello World"
expect {
-re "Hello World" { pass "$test" }
}

Run runtest again and verify the output “calc.log”

Chapter 2. Getting DejaGnu up and running

A first remote test

Testing remote targets is a lot trickier especially if you are using an embedded target
which has no built in support for things like a compiler, ftp server or a Bash-shell.
Before you can test calc on a remote target you have to acquire a few basics skills.

Setup telnet to your own host

The easiest remote host is usually the host you are working on. In this example we
will use telnet to login in your own workstation. For security reason you should never
have a telnet deamon running on machine connected on the internet, as password
and usernames are transmitted in clear text. We assume you know how to setup your
machine for a telnet daemon.

Next try whether you may login in your own host by issuing the command “telnet
localhost.1”. In order to be able to distinguish between a normal session an a telnet
login add the following lines to /home/dgt/ .bashrc.

if ["SREMOTEHOST"]
then

PS1="remote:\w\$ ’
fi

Now on the machine a “remote” login looks like this:

Example 2-11. Sample log of a telnet login to localhost

dgt:~/dejagnu.test$ telnet localhost

Trying 127.0.0.1...

Connected to 127.0.0.1.

Escape character is "]

Debian GNU/Linux testing/unstable Linux

K6Linux login: dgt

Password:

Last login: Sun Nov 25 22:46:34 2001 from localhost on pts/4
Linux K6Linux 2.4.14 #1 Fre Nov 16 19:28:25 CET 2001 i586 unknown
No mail.

remote:~$ exit

logout

Connection closed by foreign host.

A test case for login via telnet

In order to define a correct setup we have add a line containing “set target unix”
either to ~/.dejagnurc or to ~/my_dejagnu.exp. In ~/boards/standard.exp add the
following four lines to define a few patterns for the DejaGnu telnet login procedure.

Example 2-12. Defining a remote target board

set_board_info shell_prompt "remote:"
set_board_info telnet_username "dgt"
set_board_info telnet_password "top_secret"
set_board_info hostname "localhost"

As DejaGnu will be parsing the telnet session output for some well known pattern
the output there are a lot of things that can go wrong. If you have any problems verify
your setup:

o Is/etc/motd empty?
« Is /etclissue.net empty?
11

Chapter 2. Getting DejaGnu up and running

12

 Exists a empty ~/.hushlogin ~ ?
» The LANG environment variable must be either empty or set to “C”.

To test the login via telnet write a sample test case. Create the file
~/dejagnu.test/testsuite/calc.test/remote_echo.exp and add the following few
lines:

Example 2-13. DejaGnu script for logging in into a remote target

puts "this is remote_echo.exp target for $target "
target_info $target
#set verbose 9
set shell_id [remote_open $target]
set test "Remote login to S$target"
#set verbose 0
puts "Spawn id for remote shell is $shell_id"
if { $shell_id > 0 } {
pass "$test"
} else {
fail "Remote open to $target”
}

In the runtest output you should find something like:

Running ./testsuite/calc.test/local_echo.exp ...
Running ./testsuite/calc.test/remote_echoo.exp ...
this is remote_echo.exp target is unix

Spawn id for remote shell is exp7

Have again a look at calc.log to get a feeling how DejaGnu and expect parse the input.

Remote testing “Hello world”

Next you will transform the above “hello world” example to its remote equivalent.
This can be done by adding the following lines to our file remote_echo.exp.

Example 2-14. A first (local) remote "Hello world" test

set test "Remote_send Hello World"
set status [remote_send $target "echo \"Hello\" \"World\"\n"]
pass "$test"
set test "Remote_expect Hello World"
remote_expect $target 5 {
-re "Hello World" { pass "$test" }
}

Call make check. The output should contain “# of expected passes 9” and “# of unex-
cpected failures 1”.

Have a look at the procedures in /usr/share/dejagnu/remote.exp to have an
overview of the offered procedures and their features.

Now setup a real target. In the following example we assume as target a PowerBook
running Debian. As above add a test user "dgt", install telnet and FTP servers. In
order to distinguish it from the host add the line

PS1="test:>’

to /home/dgt/.bash_profile. Also add a corresponding entry "powerbook" to
/etc/hosts and verify that you are able to ping, telnet and ftp to the target
"powerbook".

Chapter 2. Getting DejaGnu up and running

In order to let runtest run its test on the "powerbook" target change the following
lines in ~/boards/standard.exp:

Example 2-15. Board definition for a remote target

set_board_info protocol "telnet"
set_board_info telnet_username "dgt"
set_board_info telnet_password "top_secret"
set_board_info shell_prompt "test:> "
set_board_info hostname "powerbook"

Now call runtest again with the same arguments and verify whether all went okay
by taking a close look at calc.log.

Transferring files from/to the target
A simple procedure like this will do the job for you:

Example 2-16. Test script to transfer a file to a remote target

set test "Remote_download"

puts "Running Remote_download"
set verbose 9

set remfile /home/dgt/dejagnu2

set status [remote_download $target /home/dgt/.dejagnurc $remfile]

if { "$status" == " } {
fail "Remote download to $remfile on $target"
} else {
pass "$test"
}

puts “"status of remote_download ist $status”
set verbose 0

After running runtest again, check whether the file dejagnu?2 exists on the target. This
example will only work if the rcp command works with your target. If you have a
working FTP-server on the target you can use it by adding the following lines to
~/boards/standard.exp:

Example 2-17. Defining a board to use FTP as file transport

set_board_info file_transfer "ftp"
set_board_info ftp_username "dgt"
set_board_info ftp_password "1234"

Preparing for crosscompilation

For crosscompiling you need working binutils, gcc and a base library like libc or
glib for your target. It is beyond the scope of this document to describe how to get
it working. The following examples assume a cross compiler for PowerPC which is
called linux-powerpc-gcc.

Add AC_CANONICAL_TARGET in dejagnu.test/configure.in at the following loca-
tion. Copy config.guess from /usr/share/automake to dejagnu.test.

AM_CONFIG_HEADER(calc.h)
AC_CANONICAL_TARGET([])
AM_INIT_AUTOMAKE(calc, 1.1)

13

Chapter 2. Getting DejaGnu up and running

14

You need to run automake 2.5 or later. Depending on your installation calling auto-
conf2.5 instead of autoconf is not needed. The sequence to regenerate all files is:

Example 2-18. Using autotools for cross development

$ autoconf2.5

$ autoheader

$ automake

$./configure --host=powerpc-linux --target=powerpc-linux

configure: WARNING: If you wanted to set the --build type, don’t use --host.
If a cross compiler is detected then cross compile mode will be used.

checking build system type... ./config.guess: ./config.guess: No such file or directory

configure: error: cannot guess build type; you must specify one

$ cp /usr/ishare/automake/config.guess .

$./configure --host=powerpc-linux --target=powerpc-linux

configure: WARNING: If you wanted to set the --build type, don’t use --host.

If a cross compiler is detected then cross compile mode will be used. \

checking build system type... i586-pc-linux-gnu

checking host system type... powerpc-unknown-linux-gnu

<...>

checking whether we are cross compiling... yes

<...>

Configuration:

Source code location: .

C Compiler: powerpc-linux-gcc

C Compiler flags: -g -O2

Everything should be ready to recompile for the target:

$ make
powerpc-linux-gcc -DHAVE_CONFIG_H -I. -I. -I. -g -O2 -c calc.c
powerpc-linux-gcc -g -O2 -o calc calc.o

Remote testing of calc

Not yet written, as I have problem getting libc6-dev-powerpc to work. Probably I
first have to build my cross compiler.

Using Windows as host and vxWorks as target
A more thorough walk-through will be written in a few weeks.

In order to test the vxWorks as a target I changed boards/standards.exp to reflect
my settings (IP, username, password). Then I reconfigured vxWorks to include
a FTP and telnet server (using the same username/password combination ad in
boards/standard.exp).

With this setup and some minor modification (e.g. replacing echo by printf)
in my test cases I could test my vxWorks system. It sure does not seem
to be a correct setup by DejaGnu standard. For instance, it still loading
/usr/share/dejagnu/baseboards/unix.exp instead of vxWorks. In any case I found
that (at least under Windows) I did not find out how the command line would let
me override settings in my personal config files.

Chapter 3. Running Tests

There are two ways to execute a testsuite. The most common way is when there is ex-
isting support in the Makefile . This support consists of a check target. The other way
is to execute the runtest program directly. To run runtest directcly from the command
line requires either all the correct options, or the Local Config File must be setup cor-
rectly.

Make check

Runtest

PASS

XPASS

FAIL

To run tests from an existing collection, first use configure as usual to set up the build
directory. Then try typing:

make check

If the check target exists, it usually saves you some trouble. For instance, it can set up
any auxiliary programs or other files needed by the tests. The most common file the
check builds is the site.exp. The site.exp file contains various variables that DejaGnu
used to dertermine the configuration of the program being tested. This is mostly for
supporting remote testing.

The check target is supported by GNU Automake. To have DejaGnu support
added to your generated Makefile.in , just add the keyword dejagnu to the
AUTOMAKE_OPTIONS variable in your Makefile.am file.

Once you have run make check to build any auxiliary files, you can invoke the test
driver runtest directly to repeat the tests. You will also have to execute runtest di-
rectly for test collections with no check target in the Makefile

runtest is the executable test driver for DejaGnu. You can specify two kinds of things
on the runtest command line: command line options, and Tcl variables for the test
scripts. The options are listed alphabetically below.

runtest returns an exit code of 1 if any test has an unexpected result; otherwise (if all
tests pass or fail as expected) it returns 0 as the exit code.

Output States

runtest flags the outcome of each test as one of these cases. A POSIX Conforming
Test Framework for a discussion of how POSIX specifies the meanings of these cases.

The most desirable outcome: the test succeeded, and was expected to succeed.

A pleasant kind of failure: a test was expected to fail, but succeeded. This may
indicate progress; inspect the test case to determine whether you should amend
it to stop expecting failure.

A test failed, although it was expected to succeed. This may indicate regress;
inspect the test case and the failing software to ocate the bug.

15

Chapter 3. Running Tests

XFAIL

A test failed, but it was expected to fail. This result indicates no change in a

known bug. If a test fails because the operating system where the test runs lacks

some facility required by the test, the outcome is UNSUPPORTED instead.
UNRESOLVED

Output from a test requires manual inspection; the testsuite could not automati-
cally determine the outcome. For example, your tests can report this outcome is
when a test does not complete as expected.

UNTESTED

A test case is not yet complete, and in particular cannot yet produce a PASS or
FAIL. You can also use this outcome in dummy “tests” that note explicitly the
absence of a real test case for a particular property.

UNSUPPORTED

A test depends on a conditionally available feature that does not exist (in the
configured testing environment). For example, you can use this outcome to re-
port on a test case that does not work on a particular target because its operating
system support does not include a required subroutine.

runtest may also display the following messages:

ERROR

Indicates a major problem (detected by the test case itself) in running the test.

This is usually an unrecoverable error, such as a missing file or loss of com-

munication to the target. (POSIX testsuites should not emit this message; use

UNSUPPORTED, UNTESTED, or UNRESOLVED instead, as appropriate.)
WARNING

Indicates a possible problem in running the test. Usually warnings correspond

to recoverable errors, or display an important message about the following tests.
NOTE

An informational message about the test case.

Invoking Runtest

This is the full set of command line options that runtest recognizes. Arguments may
be abbreviated to the shortest unique string.

-al (-a)

Display all test output. By default, runtest shows only the output of tests that
produce unexpected results; that is, tests with status FAIL (unexpected failure),
XPASS (unexpected success), or ERROR (a severe error in the test case itself).
Specify --all to see output for tests with status PASS (success, as expected) XFAIL
(failure, as expected), or WARNING (minor error in the test case itself).

--build [string]

string is a full configuration “triple” name as used by configure. This is the type
of machine DejaGnu and the tools to be tested are built on. For a normal cross
this is the same as the host, but for a canadian cross, they are seperate.

16

Chapter 3. Running Tests

--host [string]

string is a full configuration “triple” name as used by configure. Use this option
to override the default string recorded by your configuration’s choice of host.
This choice does not change how anything is actually configured unless --build
is also specified; it affects only DejaGnu procedures that compare the host string
with particular values. The procedures ishost, istarget, isnative, and setupxfail} are
affected by --host. In this usage, host refers to the machine that the tests are to
be run on, which may not be the same as the build machine. If --build is also
specified, then --host refers to the machine that the tests wil, be run on, not the
machine DejaGnu is run on.

--host_board [name]
The host board to use.

--target [string]

Use this option to override the default setting (running native tests). string is a
full configuration “triple” name of the form cpu-vendor-os as used by configure.
This option changes the configuration runtest uses for the default tool names,
and other setup information.

--debug (-de)

Turns on the expect internal debugging output. Debugging output is displayed
as part of the runtest output, and logged to a file called dbg.log . The extra de-
bugging output does not appear on standard output, unless the verbose level is
greater than 2 (for instance, to see debug output immediately, specify --debug-v
-v}). The debugging output shows all attempts at matching the test output of the
tool with the scripted patterns describing expected output. The output generated
with --strace also goes into dbg.log

--help (-he)
Prints out a short summary of the runtest options, then exits (even if you also
specify other options).

--ignore [name(s)]

The names of specific tests to ignore.

--objdir [path]

Use path as the top directory containing any auxiliary compiled test code. This
defaults to . . Use this option to locate pre-compiled test code. You can normally
prepare any auxiliary files needed with make.

--outdir [path]

Write output logs in directory path . The default is .}, the directory where you
start runtest. This option affects only the summary and the detailed log files
tool.sum and toollog . The DejaGnu debug log dbg.log always appears
(when requested) in the local directory.

--reboot [name]

Reboot the target board when runtest initializes. Usually, when running tests on
a separate target board, it is safer to reboot the target to be certain of its state.
However, when developing test scripts, rebooting takes a lot of time.

--srcdir [path]

Use path as the top directory for test scripts to run. runtest looks in this directory
for any subdirectory whose name begins with the toolname (specified with --
tool). For instance, with --toolgdb}, runtest uses tests in subdirectories gdb.* (with

17

Chapter 3. Running Tests

the usual shell-like filename expansion). If you do not use --srcdir, runtest looks
for test directories under the current working directory.

--strace [number]

Turn on internal tracing for expect, to n levels deep. By adjusting the level, you
can control the extent to which your output expands multi-level Tcl statements.
This allows you to ignore some levels of case or if statements. Each procedure call
or control structure counts as one “level”. The output is recorded in the same file,
dbg.log , used for output from --debug.

--connect [program]

--baud [number]

Connect to a target testing environment as specified by type, if the target is not
the computer running runtest. For example, use --connect to change the program
used to connect to a “bare board” boot monitor. The choices for type in the De-
jaGnu 1.4 distribution are rlogin, telnet, rsh, tip, kermit, and mondfe.

The default for this option depends on the configuration most convenient com-
munication method available, but often other alternatives work as well; you may
find it useful to try alternative connect methods if you suspect a communication
problem with your testing target.

Set the default baud rate to something other than 9600. (Some serial interface
programs, like tip, use a separate initialization file instead of this value.)

--target_board [name(s)]

--tool[name(s)]

The list of target boards to run tests on.

Specifies which testsuite to run, and what initialization module to use. --tool is
used only for these two purposes. It is not used to name the executable program
to test. Executable tool names (and paths) are recorded in site.exp and you can
override them by specifying Tcl variables on the command line.

For example, including "--tool gcc" on the runtest command line runs tests from
all test subdirectories whose names match gcc.* , and uses one of the initial-
ization modules named config/*-gcc.exp . To specify the name of the com-
piler (perhaps as an alternative path to what runtest would use by default), use
GCC=binname on the runtest command line.

--tool_exec [name]

The path to the tool executable to test.

--tool_opts [options]

--verbose (-v)

A list of additional options to pass to the tool.

Turns on more output. Repeating this option increases the amount of output
displayed. Level one (-v) is simply test output. Level two (-v-v}) shows messages
on options, configuration, and process control. Verbose messages appear in the
detailed (*.log) log file, but not in the summary (*.sum) log file.

--version (V)

18

Prints out the version numbers of DejaGnu, expect and Tcl, and exits without
running any tests.

--D[0-1]

Chapter 3. Running Tests

Start the internal Tcl debugger. The Tcl debugger supports breakpoints, single
stepping, and other common debugging activities. See the document "Debugger
for Tcl Applications” by Don Libes. (Distributed in PostScript form with expect
as the file expect/tcl-debug.ps. . If you specify -D1, the expect shell stops at a
breakpoint as soon as DejaGnu invokes it. If you specify -D0, DejaGnu starts as
usual, but you can enter the debugger by sending an interrupt (e.g. by typing
C-0).

testfile .exp[=arg(s)]

Specify the names of testsuites to run. By default, runtest runs all tests for the
tool, but you can restrict it to particular testsuites by giving the names of the .exp
expect scripts that control them. testsuite.exp may not include path information;
use plain filenames.

testfile .exp="testfilel ..."

tclvar=value

Specify a subset of tests in a suite to run. For compiler or assembler tests, which
often use a single .exp script covering many different source files, this option
allows you to further restrict the tests by listing particular source files to compile.
Some tools even support wildcards here. The wildcards supported depend upon
the tool, but typically they are ?, *, and [chars].

You can define Tcl variables for use by your test scripts in the same style used
with make for environment variables. For example, runtest GDB=gdb.old defines
a variable called GDB; when your scripts refer to $GDB in this run, they use the
value gdb.old.

The default Tcl variables used for most tools are defined in the main DejaGnu
Makefile; their values are captured in the site.exp ~ file.

Common Options

Typically, you don’t need must to use any command-line options. --tool ~ used is only
required when there are more than one testsuite in the same directory. The default
options are in the local site.exp file, created by "make site.exp".

For example, if the directory gdb/testsuite contains a collection of DejaGnu tests
for GDB, you can run them like this:

eg$ cd gdb/testsuite
eg$ runtest --tool gdb

Test output follows, ending with:

=== gdb Summary ===

of expected passes 508
of expected failures 103
lusr/latest/bin/gdb version 4.14.4 -nx

You can use the option --srcdir to point to some other directory containing a collection
of tests:

eg$ runtest--srcdir /devo/gdb/testsuite

19

Chapter 3. Running Tests

By default, runtest prints only the names of the tests it runs, output from any tests
that have unexpected results, and a summary showing how many tests passed and
how many failed. To display output from all tests (whether or not they behave as
expected), use the --all option. For more verbose output about processes being run,
communication, and so on, use --verbose. To see even more output, use multiple --
verbose options. for a more detailed explanation of each runtest option.

Test output goes into two files in your current directory: summary output in
tool.sum , and detailed outputin tool.log . (fool refers to the collection of tests; for
example, after a run with --tool gdb, look for output files gdb.sum and gdb.log .)

The files DejaGnu produces.

20

DejaGnu always writes two kinds of output files: summary logs and detailed logs.
The contents of both of these are determined by your tests.

For troubleshooting, a third kind of output file is useful: use --debug to request an
output file showing details of what Expect is doing internally.

Summary File

DejaGnu always produces a summary output file tool.sum . This summary shows
the names of all test files run; for each test file, one line of output from each pass
command (showing status PASS or XPASS) or fail command (status FAIL or XFAIL);
trailing summary statistics