
A Universal Client for Taskflow-Oriented Programming
with Distributed Components: Concepts ∗

Franc Brglez
Dept. of Computer Science

NC State University
Raleigh, NC 27695, USA

brglez@cbl.ncsu.edu

Hemang Lavana
†

Cisco Systems, Inc.
7025 Kit Creek Road, P.O. Box 14987

Research Triangle Park, NC 27709, USA

hlavana@cisco.com

ABSTRACT
This paper introduces the concept of taskflow-oriented pro-
gramming by way of a universal, configurable client that (1)
reads user-programmed interconnections of distributed com-
ponent programs as task instances, (2) dynamically renders
an interactive GUI of all interconnected components as a hi-
erarchical taskflow, and (3) dynamically creates a schedule
to execute component programs concurrently, serially, or not
at all, depending on the user-defined runtime configuration
of the taskflow topology. The implementation of the client,
including the transparent access to components via a TCP
protocol using telnet-, ssh-, http-, or socket-based clients, is
presented in the companion paper.

Conceptually, taskflow-oriented programming relies on a
recursive schema of encapsulated blackbox (whitebox) com-
ponent instances. Each encapsulated component instance
contains five primitive tasks: a blackbox (whitebox) com-
ponent, an eight-state finite-state-machine with a datapath
(FSMD), a ControlJoin, a ControlFork, and a DataMux.
User-programmed interconnections of distributed component
programs are captured in the ControlJoin and ControlFork
of each component instance. The taskflow schedule is de-
rived from the underlying TaskGraph of asynchronously in-
teracting FSMDs, each supporting a simple hand-shaking
protocol with the attached blackbox (whitebox) component.

1. INTRODUCTION
The re-use of software components can lead to rapid develop-
ment of new software applications. In contrast to hardware
components, the notion of a component in software technol-
ogy is no simple matter. In [1], a chapter entitled What a
component is and is not, analyzes a total of 10 definitions.
A definition formulated as one outcome of the Workshop on
Component-Oriented Programming is the following [2]:

‘A software component is a unit of composition with

contractually specified interfaces and explicit context

dependencies only. A software component can be de-

ployed independently and is subject to composition by

third parties.’

∗This work has in part been supported by the contract from
DARPA/ARO (DAAG55-97-1-0345).
†Hemang Lavana performed this work while affiliated with
NC State University.

In reality, the components emerging today are based on
standards that may compete and conflict with each other:
OMG’s CORBA [3], Sun’s Java [4], Microsoft’s COM [5]. A
software component considered in this paper has the gran-
ularity of a megamodule [6]:

‘Megamodules are internally homogeneous, indepen-

dently maintained software systems [....] Each meg-

amodule describes its externally accessible data struc-

tures and operations and has an internally consistent

behavior.’

i.e. such components are stand-alone programs, installed
and maintained on a specific host on the network.

In contrast to developing a megamodule composition, pro-
gramming architecture, and language/compilation environ-
ment as envisioned in [6], the widely practiced approaches
to composition of stand-alone modules into a single program
rely on scripting languages [7]. Scripting is widely used by
programmers to deliver packaged multi-component applica-
tions whose interface may range from a simple command-line
to complex GUI in workflows, e.g. [8, 9] – and is typically not
user-configurable. Such programs require expert program-
ming effort and expert software maintenance, especially if
components are distributed across heterogeneous hosts and
file systems, support not only serial but also concurrent exe-
cution, and are expected to facilitate collaboration between
distributed teams to access shared data and to control invo-
cation of specific components.

When digital system designers create component-based
systems, they routinely use a digital simulator client to an-
alyze the behavior of a specific configuration of intercon-
nected components, and if desired, invoke another client to
map the configuration onto a hardware module. Such clients
are written by a relatively small programming teams – but
for a large number of client users. In contrast, when it comes
to creating a new program from existing software compo-
nents, the prevalent approach today is to engage an expert
programmer to write a customized script each and every
time. In this and the companion paper [10], we propose
an alternative: a taskflow-oriented programming paradigm,
with task instances representing distributed stand-alone com-
ponent programs, such that users, without assistance from
expert programmers, can compose interactive, executable
programs using these components. Such compositions can
be also rendered collaborative if and when needed. This

Task “Place & Route & Simulate”

Task A1: place standard cells from netlist
N(a) @host a1

Task A2: place standard cells from netlist
N(a) @host a2

Task B1: place blocks from netlist
N(b) @host b1

Task C1: route all placed netlists ...
Task C1a: abort 3rd placement, download

2-of-3 placements @host c1
Task C1b: route both placements @host c1

Task D1: annotate/simulate p&r netlists ...
Task D1a: annotate netlist N(a)

with extracted layout @host c1
Task D1b: annotate netlist N(b)

with extracted layout @host c1
Task D1c: simulate annotated netlists ...

Task D1c1: pre-process input data
@host c1

Task D1c2: simulate @host c1
Task D1c2: post-process output data

@host c1

Figure 1: A tree and a graph view of taskflow hierarchy, represented as blackboxes and whiteboxes.

approach has a direct analogy with the ‘digital simulator’
client, which is created once for a large class of applications
and users. Rather than engaging a programmer to write a
custom script each time a composition of a new software
system is needed, user alone can now (1) write a taskflow
configuration, (2) invoke the universal client (OmniFlow)
that reads the configuration and renders it as a highly in-
teractive GUI, and (3) interact with the taskflow in any
of the following ways: reconfigure the taskflow interconnec-
tions, view or edit input/output data, descend/ascend the
taskflow hierarchy, select the mode of execution, invoke the
taskflow, abort the taskflow (if already executing), reset the
state of the taskflow, etc.

Conceptually, taskflow-oriented programming relies on a
recursive schema of encapsulated blackbox (whitebox) com-
ponent instances. Each stand-alone component is repre-
sented as a blackbox component; a whitebox is simply a
composition of blackbox and whitebox components. Each
encapsulated component instance contains five primitive tasks:
a blackbox (whitebox) component, an eight-state finite-state-
machine with a datapath (FSMD), a ControlJoin, a Control-
Fork, and a DataMux. User-programmed interconnections
of distributed component programs are captured in the Con-
trolJoin and ControlFork of each component instance. The
taskflow schedule is derived from the underlying TaskGraph,
a directed polar graph of asynchronously interacting FS-
MDs, each supporting a simple hand-shaking protocol with
the attached blackbox (whitebox) component. Not surpris-
ingly, notions of a blackbox, a whitebox, and an encapsula-
tion used in this paper have a context that is specific to the
proposed task instance architecture, first introduced in [11].

The paper is organized into several sections: (2) Back-
ground and Motivation, (3) Taskflow Architecture that in-
troduces TaskGraph, DataGraph, FSMD, ControlJoin, Con-
trolFork, and DataMux, (4) Taskflow Schema and Schedul-
ing, (4) Representative Taskflow Patterns, and (5) Summary
and Conclusions.

2. BACKGROUND AND MOTIVATION
To a large extent, two project drivers motivated the develop-
ment of the universal user-configurable client: one involved
a prototype testbed for distributed experimental design and
performance evaluation of graph-based algorithms [11, 12],
the other a distributed VLSI design flow environment con-
sisting of commercial and university-based tools, some re-
siding at MSU, some at MIT, and some at NCSU [11, 13].

At a first glance, the two projects would not appear to
have much in common. However, when we organize the
computational tasks involved in each of the projects, two
very generic views about such organizations emerge. One is
a tree view, where the computational project is organized as
a hierarchy of tasks in a rooted tree. The second one is a
graph view that intuitively depicts the choices of sequences
in which tasks may be invoked and executed. An illustra-
tive example of such representations, based on a realistic
segment of VLSI design tasks, is shown in Figure 1 and can
be described in few words as follows:

• invoke, on a local host (@*), the task node named Be-
gin to concurrently invoke three tasks {A1, A2, B1},
each representing a placement algorithm executing on
hosts {a1, a2, b1}, given a netlist N(a) as data input
under host {a1, a2} and a netlist N(b) as data input
under host {b1}. Tasks may be invoked concurrently
since all have been assigned to unique hosts. Each of
these three tasks may be repeated a number of times,
subject to specific terminating conditions. Here, each
task represents an instance of an encapsulated black-
box, i.e. a stand-alone program with a standardized
interface.
• invoke task C1 as soon as either of task pairs {A1, B1}

or {A2, B1} completes last iteration. This task repre-
sents a whitebox instance, composed of two blackbox
instances, invoked on host c1 serially. First, one of the
still executing tasks, A1 or A2, is aborted, and two
placement files along with netlists N(a) and N(b) are

downloaded to host c1. Next, given the (x, y) coordi-
nates of all placed objects and the respective netlists,
all pin-to-pin connections are routed to complete the
task C1.

• invoke task D1 as soon as task C1 completes. This
tasks represents a whitebox instance, composed of two
blackboxes, D1a and D1b, and a whitebox D1c. Since
D1a and D1b are assigned to the same host, they are
executed serially in random order. Otherwise, they
would have been executed concurrently. As soon as
both of these tasks complete, task D1c is invoked, ex-
panding into tasks {D1c1, D1c2, D1c3} for serial exe-
cution, as determined by the task dependencies.

The graph view in Figure 1 is in fact a representation of a
TaskGraph, a hierarchical directed polar graph with three
edge types (invocation, repeat invocation, and abort edge).
The nodes designated as Begin and End are the source and
the sink task nodes that make the graph a polar graph.
The taskflow itself is an intersection of a TaskGraph and
a DataGraph, to be discussed in greater detail in the next
section.

The distinct representation of the taskflow edges is use-
ful for both the visual interface as well as the internal rep-
resentation. Whenever a task is to be repeated, a repeat
invocation edge is present to indicate the intention. When-
ever a task is to be potentially aborted, an abort invocation
edge is present. Given the task structure and the task syn-
chronization as described for Figure 1, the omission of abort
edges would result in a less efficient implementation of this
taskflow, since one of the tasks, A1 or A2, would have been
executing to its scheduled completion with no chance to im-
pact on the overall taskflow objectives.

2.1 Taskflow GUI Features
Both the tree and the graph view in Figure 1 serve as the
basis for the graphical-user interface (GUI) described in the
companion paper [10]. There is a wide range of possible user
interactions with this interface, supported by the taskflow
architecture as described in the section that follows. To
introduce representative elements of the proposed taskflow-
oriented programming paradigm, we list and elaborate on a
number of features of the taskflow GUI:

(1) structured text-based entry of the taskflow hierarchy,
with each taskflow represented as an intersection of a
TaskGraph and DataGraph. This includes user-entry
of location, access protocol, and invocation privileges
for each blackbox component being encapsulated.

(2) automatic generation of the GUI from user-entered
textual description of encapsulated task instances.

(3) point-and-click open, close, ascent, and descent of the
tree and the graph hierarchy.

(4) point-and-click reconfiguration of any invocation, re-
peat invocation, and abort invocation edge into a ‘closed’
and ‘open’ state.

(5) point-and-click invocation of the taskflow and its sched-
ule by clicking on any of its task nodes, including the
Begin task node. The schedule is generated dynam-
ically, relative to the invoked task node, and subject
to the user-defined runtime configuration of all edges.
Tasks may be invoked only if driven by invocation
edges that are in ‘closed’ state.

(6) point-and-click abort of the taskflow by clicking on one
or more of the executing task nodes, propagated in a
descending order of taskflow hierarchy.

(7) point-and-click reset of the taskflow state, propagated
in a descending order of taskflow hierarchy.

(8) point-and-click access to view and edit data associated
with each task, represented as input (output) data
nodes associated with each task (such nodes are shown
in Figure 2 but not in Figure 1).

(9) point-and-click execution of the taskflow using local
data for each task rather than flow data generated dy-
namically by other tasks in the flow.

(10) point-and-click execution (and testing) just the control
structure of the taskflow, using no data.

To support the features of the proposed taskflow GUI, a
taskflow architecture must be formalized. We outline re-
quirements for such an architecture next.

2.2 Taskflow Architecture Requirements
The interfaces between the task instances as depicted in Fig-
ure 1 are dominated by three types of directed task-to-task
control edges: InvocationEdge, RepeatInvocationEdge, and
AbortInvocationEdge, whose enabled/disabled (closed/open)
state is also under user-control. While data-to-task and
task-to-data edges are not shown explicitly, it is understood
that the implicit placement of these edges induces task-data
and data-task dependencies that are compatible with the
explicit placement of the control edges as shown. For exam-
ple, task instances {A1, A2, B1} in Figure 1 are independent
of each other; all can be invoked and executed concurrently
since none depend on output data of the other.

The interfaces, not seen in the GUI, between the task
instance layer and the layer of each (unencapsulated) black-
box itself are central to the taskflow architecture definition
as described in the next section. The taskflow architec-
ture requirements are rooted in the principles, the discipline,
and the simplicity of structured programming composition
schemes. The truly fundamental of these schemes are, with
respect to each task:

sequencing, conditioning, and replication1.

All of these composition schemes are illustrated in the graph
view in Figure 1. Moreover, another essential composition
scheme, also embodied in this graph view, relates to ‘man-
ageability of programs’ as eloquently articulated in [14]:

Our most important mental tool for coping with
complexity is abstraction. . . . For the intellectual
manageability, it is crucial that the constituent
operations at each level of abstraction are con-
nected to sufficiently simple program schemas,
and that each operation is described as a piece
of program with one starting point and a single
termination point. This allows defining states
of the computation (P,Q), i.e. relations among
the involved variables, and attaching them to the
starting and terminating points of each operation
(S). It is immaterial, at this point, whether these
states are defined by rigorous mathematical for-
mulas (i.e. by predicates of logical calculus) or

1Here, we paraphrase [14], where such composition schemes
are described with respect to program statements.

by sufficiently clear and informative sentences,
or by combination of both. The important point
is that the programmer has the means to gain
clarity about the interface conditions between the
building blocks out of which he composes his pro-
gram [15].

An example of operation (S) is any whitebox component in
Figure 1, with embedded starting and terminating points
represented as Begin and End task primitives, redefined for-
mally as BeginFork and EndJoin in the next section. Major
requirements that are to be supported by the taskflow ar-
chitecture as proposed in this paper are thus as follows:

(1) each task instance encodes the state of outgoing Invo-
cationEdges, RepeatInvocationEdges, and AbortInvo-
cationEdges whether to invoke the incident task once,
repeatedly, or whether to abort the incident task being
executed.

(2) the state of each edge is read by the incident task if
and only if the user has enabled the edge to be ‘closed’
rather than ‘open’.

(3) each task instance decodes only the enabled states
of incoming InvocationEdges, RepeatInvocationEdges,
and AbortInvocationEdges. By default, a task is in-
voked if and only if the state of all enabled Invoca-
tionEdges is valid. A number of other special task
synchronization conditions can be considered, such as
the one shown for task C1 in Figure 1, and others dis-
cussed in Section 3.2 of the paper. A task is repeated
if and only if the state of its RepeatInvocationEdge is
enabled and valid. A task is aborted if it is in an execut-
ing state and the state of at least one of its AbortEdges
is enabled and valid.

(4) each task instance may synchronize two or more pre-
decessor tasks and invoke concurrently one or more
successor tasks.

(5) the primitive task Begin or BeginFork has no explicit
incoming edges, only one or more outgoing Invoca-
tionEdges, and zero or more AbortInvocationEdges.
The outgoing edges are enabled either by the task par-
ent or via the point-and-click GUI. In either case, such
enabling may be subject to data-specific conditions.

(6) the primitive task End or EndJoin has no explicit out-
going edges, only one or more incoming InvocationEdges,
and zero or more AbortInvocationEdges. By default,
the task is completed if and only if the state of each
enabled InvocationEdge is valid.

We formalize the taskflow architecture in the next section.
In subsequent sections, we introduce the taskflow schema,
taskflow scheduling algorithm, and a number of taskflow
synchronization patterns that are readily supported by the
proposed taskflow-oriented programming paradigm.

3. TASKFLOW ARCHITECTURE
From a user perspective, a universal client that supports
taskflow-oriented programming is expected to have a num-
ber of features, such as listed in the previous section. The
taskflow architecture that supports an implementation of
such a client is based on layering a few simple formal mod-
els. For clarity, we introduce these models in two stages of
successive refinements:

• taskflow primitives, graphs and layers;
• task instance architecture.

3.1 Taskflow Primitives, Graphs, and Layers
Each taskflow rendered by the universal client can be de-
composed into a total of five abstract primitive task types:

• BlackBoxComponent (BBC);
• FiniteStateMachine and Datapath (FSMD);
• BeginFork/ControlFork (BF/CF);
• EndJoin/ControlJoin (EJ/CJ), and
• DataMux (DM, a data multiplexor).

BeginFork and ControlFork are functionally equivalent, so
are EndJoin and ControlJoin. The naming convention will
be clear once we describe the context in which each primitive
task is used. Each task communicates with its environment
by way of directed edges, attached to ports on the task layer.
Ports hold, and can be probed, for two classes of variables:
control variables or data variables. Data variables are of two
types: temporary and persistent. We say that a data vari-
able is persistent if its value is saved in a file. Depending on
the variable class, we distinguish between input/output Con-
trolPorts and input/output/inout/outin DataPorts. When a
task reads from and writes to the same port, the data port
is either of type inout or outin. An inout port signifies that
the task expects the data to be present before invocation
and may overwrite it with new data. An outin port signifies
that the data is not present before the task invocation and
is generated internally by the task; data may be reused by
the task on subsequent repeated invocations.

We first describe the role of each primitive in the context
of its arrangement with other primitives and layers of hier-
archy. Starting at the top-most level, we have a taskflow
layer or a whitebox component layer, connecting a single in-
stance of a BeginFork task primitive, any number of task
instances, and a single instance of an EndJoin task prim-
itive. Expanding any task instance layer, we always find
an instance of a ControlJoin, a ControlFork, and a Data-
Mux, connected to an encapsulated blackbox (whitebox)
component. Expanding the encapsulated blackbox (white-
box) component layer further, we find a FiniteStateMachine
and Datapath (FSMD) primitive connected to a blackbox
(whitebox) component layer. The process of expansion re-
peats if the encapsulated component represents an encapsu-
lated whitebox. The process terminates when all encapsu-
lated components are encapsulated blackboxes. Examples
of these relationships are illustrated in Figure 2. We now
describe these layers in more detail.

BlackBoxComponent (BBC) Layer. A blackbox com-
ponent (BBC) is a stand-alone component program exe-
cutable on a specific host. Its layer (that cannot be ex-
panded any further) has an invocation/abort control port,
a status control port, any number of input data ports, and
any number of output data ports. A program may be in-
voked, and when executing, aborted via the same control
port. When invoked and executing, the program may read
input data, it may write output data, terminate and signify
completion. By comparing time-stamps of input and output
data sets, we may also deduce the completion status.

Encapsulated BlackBoxComponent Layer. An encap-
sulated blackbox component layer represents an arrangement
of a BBC with a FSMD (finite-state-machine with datap-
ath). Here, the blackbox component is simply an extension
of the data path, communicating with the FSMD by way of
a two handshaking signals: invocation (tinv) and completion

An encapsulated blackbox (whitebox) component layer rep-

resents an arrangement with a FSMD (finite-state-machine
with datapath [16]). Control and data ports at the encap-
sulated layer are connected to control and data ports at
the blackbox (whitebox) component layer. Connections by
directed internal control edges are shown for two types of
control ports at respective layers, the invocation port with
an arrow and the status port with a square. Significantly,
signals tinv and tcom that internally connect FSMD to the
respective blackbox (whitebox) component, illustrate that
the blackbox (whitebox) component is simply an extension
of the data path, communicating with FSM by way of the
two handshaking signals.

There are two types of data ports, shown as triangles:
ones to connect persistent data (white) and ones that con-
nect temporary data (shaded). In addition, ports can be
represented as port stacks if data is to be read and written
in a specific sequence. For clarity, connections between data
ports are not shown.

A whitebox component represents a hierarchical taskflow of
directed acyclic graphs (DAGs) with nodes as (hierarchi-
cal) task instances and data instances. Each DAG is a po-
lar graph, with BeginFork (BF) and EndJoin (EJ) primitive
tasks representing the source node and the sink node respec-
tively. Furthermore, each DAG can be represented as an
intersection of a TaskGraph and a DataGraph. The nodes
in the TaskGraph are task instances of blackbox (white-
box) components, including the BeginFork and EndJoin
node, and there are three types of GUI-controlled directed
edges: InvocationEdge, RepeatInvocationEdge, and AbortIn-
vocationEdge. Each RepeatInvocationEdge can only create
a self-loop with the task that is driving it. The DataGraph
is a directed bipartite graph with two types of nodes: task
instances as described in the TaskGraph and data instances,
all connected with directed data-to-task and task-to-data
DataEdges.

A task (a taskflow) instance layer is an arrangement of an

encapsulated blackbox (whitebox) component and three
task primitives: ControlJoin (CJ), ControlFork (CF), and
DataMux (DM, data multiplexor), with data attached to its
ports. For clarity, only connections between control ports
of the encapsulation layer and the task instance layer are
shown. Most significantly, the task instance layer is part of
the GUI, along with the GUI-controlled InvocationEdges,
RepeatInvocationEdges, and AbortInvocationEdges, and
also with DataEdges to connecting tasks to data nodes.
The purpose of the DataMux task is to select local or flow
data before actually invoking the encapsulated component.
Functionally, ControlJoin is equivalent to EndJoin task; its
purpose here is to decode and synchronize the enabled states
of incoming InvocationEdges before deciding whether to in-
voke the encapsulated component. Similarly, ControlFork is
equivalent to BeginFork task; its purpose here is to validate
the states of all outgoing InvocationEdges that may or may
not invoke all successor task instances concurrently.

Figure 2: Layered primitives of the task model.

(tcom). Such arrangements are common in synthesis and de-
sign of hardware systems [16, 17]. The blackbox itself is
invoked by the companion FSMD, which in turn is invoked
by the user or another program via its own FSMD.

Whitebox Component (WBC) Layer. A whitebox com-
ponent (WBC) contains two or more task instances. In gen-
eral, a whitebox component represents a hierarchical task-
flow of directed acyclic graphs (DAGs) with nodes as (hierar-
chical) task instances and data instances. Each DAG is a po-
lar graph, with BeginFork (BF) and EndJoin (EJ) primitive
tasks representing the source node and the sink node. Fur-
thermore, each DAG can be represented as an intersection
of a TaskGraph and a DataGraph. The nodes in the Task-
Graph are task instances of blackbox (whitebox) compo-
nents, including the BeginFork and EndJoin node, and there
are three types of GUI-controlled directed edges: Invoca-
tionEdge, RepeatInvocationEdge, and AbortInvocationEdge.
Each RepeatInvocationEdge can only create a self-loop with
the task that is driving it. The DataGraph is a directed bi-
partite graph with two types of nodes: task instances as de-
scribed in the TaskGraph and data instances, all connected
with directed data-to-task and task-to-data DataEdges.

EncapsulatedWhitebox Component Layer. An encap-
sulated whitebox component layer represents an arrangement
of a WBC with a FSMD (finite-state-machine with datap-
ath). Just as in the case of blackbox encapsulation, the
whitebox component is simply an extension of the data path,
communicating with the FSMD by way of a two handshaking
signals tinv and tcom.

Task Instance Layer. A task instance layer contains a
connection of three task primitives to the ports of the en-
capsulated blackbox or whitebox component: ControlJoin
drives the invocation port of the FSMD and ControlFork
is driven by the status port of the FSMD. A RepeatCondi-
tion, whether to repeat the task or not, is evaluated within
FSMD. In addition, a DataMux selects between the two in-
put data sets: a data set that typically is used to test the
task instance in a local context and a data set generated by
other tasks in the context of the taskflow execution. Only
the selected data is accessible to the encapsulated task com-
ponent.

3.2 Task Instance Architecture
A unique attribute of the taskflow architecture is its support
for a recursive schema of encapsulated blackbox (whitebox)
task instances. The encapsulation defines a layer that repre-
sents an arrangement of an eight-state asynchronous finite-
state-machine and datapath (FSMD) with either a blackbox
or a whitebox component. A whitebox component is a task-
flow of two or more task instances. A task instance repre-
sents a layer that contains an encapsulated task (a blackbox
or a whitebox component) connected to three primitive task
components: ControlJoin, ControlFork, and DataMux. We
now expand from the introductory description in Figure 2
to the architectural description in Figure 3.

The task primitives ControlJoin, DataMultiplexor, and
ControlFork represent combinational logic and can be de-
scribed in terms of Boolean equations. In Figure 3, we
present the equations in a tabular form and as formulas.
While these are complete for the DataMultiplexor and the
ControlFork, we list only the default conditions for Con-
trolJoin. The purpose of the ControlJoin is to synchronize

the status of predecessor tasks before invoking the current
task instance. A number of such conditions may exist, de-
pending on the purpose of the current task; a representative
set of alternative ControlJoin conditions is listed in [10],
more detailed in [11].

Asynchronous FSM with Datapath (FSMD). The ab-
stract task primitive FSMD is at the very core of the pro-
posed task instance architecture. In the current FSMD im-
plementation, there are a total of eight states:

1. Waiting
2. Enabled
3. Xecuting
4. Completed

5. Done
6. Aborted
7. TimedOut
8. Skipped

Whenever the FSMD receives a ‘reset’ pulse signal, it returns
to the Waiting state. From this state, the FSMD transi-
tions to the Enabled state upon receiving the ‘invocation’
pulse signal from the ControlJoin primitive task. From this
state, the FSMD transitions to the Xecuting state, invok-
ing the blackbox component, only upon receiving the ‘host’
pulse signal that the designated host is available. When
in Xecuting state, the FSMD may transition to Waiting,
Aborted, TimedOut, or Completed state, depending whether
it receives a ‘reset’, an ‘abort’, a ‘timed-out’, or a ‘com-
pleted’ pulse signal. When in a Completed state, the FMSD
may transition either to Enabled state (and repeat invoca-
tion of the blackbox component if the host is available), or
transition to Done state, if the ‘done’ pulse signal is gener-
ated by the datapath to terminate the repeated invocation
of the task. A complete state-transition table and datapath
table of the FSMD primitive task is available in [11].

We next expand on the representation of ControlJoin,
DataMux, and ControlFork as introduced in Figure 3.

ControlJoin (Default Conditions). The ControlJoin
primitive generates one of the three types of signal pulses:
(1) an invocation pulse PI , (2) a skip pulse PS , and (3) an
abort pulse PA. The first two pulses are generated based on
the various states of its M predecessor tasks as well as the
user-configurations of the control-edges represented by Efm .
Similarly, the abort pulse is based on the various states of its
P predecessor tasks as well as the user-configurations of the
abort-edges represented by Eam . As shown in Figure 3 (a),
PI pulse is generated when all of its predecessor tasks have a
‘valid’ state QVm and when all the control-edges Efm are en-
abled. On the other hand, PS pulse is generated when any
of its predecessor task is in either ‘not-valid’, ‘skipped’ or
‘timed-out’ state and when the corresponding control-edge
Efm is enabled. A PA pulse is generated when any one of
its predecessor task is in ‘valid’ state and when the corre-
sponding abort-edge Eam is enabled. These three equations
specify the default join condition for the CJ primitive.

In addition to the above default join condition, it is pos-
sible to specify more complex join conditions [11]. Some of
these conditions are analyzed in Section 5.

DataMux. The DataMux primitive is used to switch be-
tween local data and flow data during taskflow execution.
When the user-configured global signal Eg is disabled, it se-
lects the local data as represented by DIli in Figure 3 (b).
When Eg is enabled, it is essentially in flow data mode, how-
ever, users can still selectively switch to local data coming
from certain predecessor tasks by disabling the correspond-

The architecture of the task instance
is based on the arrangement of the
abstract task primitives FSMD, Con-
trolJoin (CJ), DataMux (DM), Con-
trolFork (CF) and BlackBox (White-
Box) components introduced in Figure
2. FSMD has a total of eight states,
outlined in the paper. A complete de-
scription of FSMD is presented in [11].
Functional descriptions of CJ, DM and
CF are given below.

Repeated task invocation is controlled
by FSMD. This feature is captured as
RepeatCondition in the taskflow schema
in Figure 4.

(a) ControlJoin conditions:
Default join:

PI =
∏M

m=1
Efm ·QVm

PS =
∑M

m=1
Efm · (QNm +QSm +QTm)

PA =
∑P

m=1
Eam ·QVm

For other representative join conditions, see [11].

(b) DataMux Table:
Eg Efi DIi
0 x DIli
1 0 DIli
1 1 DIfi

(c) ControlFork table:

Inputs nth Outputs
QE QX QC QT QA QS QD DOn QEn QXn QCn QTn QAn QSn QVn QNn
1 0 0 0 0 0 0 x 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 x 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 x 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 x 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 x 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 x 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 † 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 ‡ 0 0 0 0 0 0 0 1

† user-specified fork condition such as, ‘size(DOn) > 128’, is true
‡ user-specified fork condition such as, ‘size(DOn) > 128’, is false

Figure 3: The architecture of the task instance.

ing control-edge Efi . Thus, the DataMux primitive selects
the flow data only when Eg and Efi are both enabled.

ControlFork Table. The ControlFork primitive repre-
sents a combinational logic used to output the state of the
FSMD and when the task completes, it also validates user-
specified condition, if any, for the output data DOn and
generates a corresponding ‘valid’ or ‘not-valid’ output state.
For example, in Figure 3 (c), the user specified condition
is ‘size(DOn) > 128’. Accordingly, the last two rows in
the table shows that it generates a ‘valid’ state QVn when
the condition evaluates to true and it generates a ‘not-valid’
state QNn when the condition evaluates to false.

4. TASKFLOW SCHEMA & SCHEDULING
In choosing the asynchronous FSM model to encapsulate
each blackbox as well as each whitebox component, we have
shown preference for the traditional (and simpler) approach,
proven since 1950’s in the design of increasingly complex

hardware components and systems. Electronic circuit design
in particular has a long tradition of addressing problems of
concurrency and synchronization. The design of systems
based on interacting FSMs, synchronous and asynchronous,
is common. Alternative approaches, such as the formalisms
of Petri nets [18], Actor Computations [19], Action Systems
[20], Temporal Logic of Actions [21], appear less suitable –
at present.

The instantiation of each encapsulated task with primi-
tives such as ControlJoin, DataMux, and ControlFork bears
similarities, in principle at least, to Hoare Logic and its ex-
tension with auxiliary variables [22]. However, the motiva-
tion for this paper, as clearly stated in Section 2, is (1) to
formalize a basis for implementation of a universal client,
and (2) to provide the user with a tool to interactively com-
pose and execute new programs from existing component
programs. The emphasis here is on ‘clarity about the inter-
face conditions between the building blocks out of which the

The taskflow schema is based
on the task instance archi-
tecture. The MainTask layer
serves to invoke any Task-
Graph of task instances. The
TaskInstance layer is always
an arrangement of an En-
capusulatedTask with Con-
trolJoin, DataMux and Con-
trolFork primitives, and op-
tionally, RepeatCondition.

The encapsulated task layer

assigns, via FSMD, states to

blackbox (whitebox) compo-

nents. There are two sublay-

ers: a single-task definition

(multi-task definition) and a

single-task body (multi-task

body). The definition layer

contains I/O port lists, and

in case of a whitebox, a Task-

Graph of task instances. This

layer also serves as an API for

the task.

MainTask

• TaskInstanceList
• TaskGraph
• BeginFork
• TaskInstance1
• TaskInstance2
• . . .
• EndJoin

TaskInstance

• ControlJoin
• DataMux
• EncapsulatedTask
• RepeatCondition
• ControlFork

Encapsulated blackbox component (FSMD
←→ BBC)

SingleTaskDefn (STD)

• InputPortList
• InOutPortList
• OutInPortList
• OutputPortList

SingleTaskBody

• BeginFork
• BlackBoxComponent
• EndJoin

Encapsulated whitebox component (FSMD
←→ WBC)

MultiTaskDefn (MTD)

• InputPortList
• InOutPortList
• OutInPortList
• OutputPortList
• TaskInstanceList
• TaskGraph

MultiTaskBody

• BeginFork
• TaskInstance1
• TaskInstance2
• . . .
• EndJoin
• DataGraph

Figure 4: A schema to represent taskflow layers.

user composes his program’ [15], not on program verification.
The main goals of this section are: (1) to present a task-

flow schema based on the proposed taskflow architecture,
and (2) to introduce a simple but effective taskflow schedul-
ing algorithm.

4.1 Taskflow Schema
The schema to construct a taskflow consists of mainly two
layers: an encapsulated blackbox (single-task) or whitebox
(multi-task) layer, and a task instance layer. The schema for
task instance layer is identical to the conceptual description
in Section 3.2. However, the schema for the encapsulated
task layer contains two distinct sublayers: a single-task def-
inition (multi-task definition) layer, and a single-task body
(multi-task body) layer. Such a distinction helps in separat-
ing the task API from its body declaration, which can be
very detailed. The definition layer can thus be considered
as an API for the task; it is this layer that should be readily
accessible.

Figure 4 shows the structure of the taskflow schema. The
single-task and multi-task definition layers are identical to
the extent that both contain a list of input, inout, outin and
output ports, introduced in Section 2. In addition to the
common port list types, the multi-task definition layer con-
tains two more elements: (1) a TaskList that enumerates the
number of encapsulated tasks occurring in the flow, and (2)
a TaskGraph that specifies the directed task-to-task connec-
tivity with control-edges. These definitions then form the
API for the task layer.

The task body layer, as the name suggests, contains more
detailed information about the task. The SingleTaskBody
contains exactly three elements: BeginFork, BlackBoxCom-
ponent and EndJoin. Additionally, the BeginFork task is
configured by the user to determine as to under what con-
ditions should the blackbox component task be bypassed.
Typical conditions include options to invoke tasks based on

time-stamps of input/output data, presence or absence of
certain data files, etc. As for the blackbox component, user
needs to specify the details necessary to invoke the blackbox
program, namely: (1) the program name, (2) the command-
line arguments, (3) the host and directory location of where
to invoke the program, and (4) the protocol service used to
access the program, such telnet, ftp, ssh, http, etc.

The description of MultiTaskBody has three primitive task
elements BeginFork, DataGraph and EndJoin and one or
more TaskInstance layers. The function of the BeginFork
and EndJoin elements is same as for single task body layer,
whereas the DataGraph element is used to specify the task-
to-data and data-to-task data edges for the taskflow. The
task instance layer is described next.

Once the encapsulated tasks have been created for either a
multi-task or a single task, a TaskInstance layer is created by
adding a ControlJoin, DataMux and a ControlFork elements,
and optionally a RepeatCondition. An instance of a task is
specific to the data used in invocation of the encapsulated
task and several such instances can be easily created for each
set of data.

Finally, it is necessary to have a MainTask layer which
allows us to select and invoke the specific task instances
from a large library. TaskMain element is similar to an en-
capsulated whitebox, it consists of the following elements:
(1) a TaskInstanceList element that represents a list of task
instances which need to be invoked at the , and (2) a Task-
Graph that specifies the directed task-to-task connectivity
with user-configurable control-edges, and (3) a BeginFork,
an EndJoin and one or more number of task instances cre-
ated in the main layer for invocation. The main difference
between an encapsulated whitebox and the main task is that
the latter does not have any flow data dependencies. Thus,
each task instance depends on other task instances as de-
termined by the the task graph which schedules the actual
sequence of execution.

For each task Tk (k > 0) {
/* evaluate ControlJoin conditions */
{PIk , PAk , PSk} ≡ CJk(Qm, Efm , Eap) ∀m ∈ pred(Tk), ∀p ∈ abort(Tk)

where
Qm = {QEm , QXm , QCm , QTm , QAm , QSm , QVm , QNm}

/* evaluate FSMDk conditions */
if PIk = 1 and Wk = 1 then

transition to state Ek

if thk = 1 then
transition to state Xk and generate invocation signal
for BBCk/WBCk: tinvk ≡ QXk = thk .Ek

if tcomk = 1 (asserted on completion of BBCk/WBCk)
transition to state Ck

if trk = 1 (repeat signal, asserted by datapath)
transition to state Ek where another invocation
signal tinvk may be generated, given that thk = 1, etc.

if tdk = 1 (done signal, asserted by datapath)
transition to state Dk
which is the nominal exit state for FSMDk input PIk = 1.

if (PAk = 1) and (Ek = 1 or Xk = 1) then
transition to state Ak
which is the nominal exit state for FSMDk input PAk = 1.

if (PSk = 1 and Wk = 1) or (tsk = 1 and Ek = 1) then
transition to state Sk
which is the nominal exit state for FSMDk input PSk = 1 or
input tsk = 1 (generated by datapath)

/* evaluate ControlFork conditions */
Qn ≡ CFk(Qk,DOk) ∀n ∈ succ(Tk)

where DOk is the set of output data values produced by task Tk, and
Qn = {QEn , QXn , QCn , QTn , QAn , QSn , QVn , QNn}
Qk = {QWk , QEk , QXk , QCk , QTk , QAk , QSk , QDk}

}

Figure 5: Outline of the scheduling algorithm for task Tk and its successors.

4.2 Taskflow Scheduling
The invocation of any task instance Tk is subject to evalu-
ation of a number of control signals as well as data values.
Consider the task instance architecture in Figure 3. Major
evaluations take place within the ControlJoin, FSMD and
ControlFork.

Let m ∈ pred(Tk) designate m control-edge predecessors
of task Tk; p ∈ abort(Tk) designate p abort-edge incoming
tasks of task Tk (these could include successors of Tk); and
let CJk(Qm, Efm , Eap) designate the assignments evaluated
by the ControlJoin, where Qm = {QEm , QXm , QCm , QTm ,
QAm , QSm , QVm , QNm} represents the states of the prede-
cessor task Qm, Efm represents the state of the forward
(invocation) user-configured control-edge; and Eap repre-
sents the state of the user-configured abort-edge. Then,
∀m ∈ pred(Tk), ∀p ∈ abort(Tk):

{PIk , PAk , PSk} ≡ CJk(Qm, Efm , Eap)

where {PIk , PAk , PSk} represent the invocation, abort, or
skip signal as the input to FSMDk.

As the state of the task Tk is changing, it is being evalu-
ated by the ControlFork as the assignment

Qn ≡ CFk(Qk,DOk) ∀n ∈ succ(Tk)

where n ∈ succ(Tk) designates n control-edge successor

states of task Tk;
Qn = {QEn , QXn , QCn , QTn , QAn , QSn , QVn , QNn};
Qk = {QWk , QEk , QXk , QCk , QTk , QAk , QSk , QDk}; and
DOk is the set of output data values produced by task Tk.

The state of the task Tk is changing according to the in-
puts and the state transition table in FSMD [11]. The over-
all scheduling algorithm that takes the transition table and
the Datapath table of the FSMDk into account is outlined in
Figure 5. Nominally, the user will initiate the invocation of
the BeginFork task, i.e. task for which k = 0, T0. Tasks can
be executed concurrently – but only if the host is available
(i.e. thk = 1) for each scheduled task. A new task k will be
invoked only if the synchronizing conditions, evaluated by
a task-specific CJk will have been satisfied. The last task
to be evaluated will always be the EndJoin task, since the
TaskGraph is polar.

5. TASKFLOW PATTERN EVALUATIONS
Features of the taskflow environment can be evaluated in
terms of the distinctive scheduling patterns: from simple se-
quencing of tasks, to splits, concurrency, joins, iterations,
and cycles. A number of such patterns have been identified,
evaluated and reported in the context of workflow environ-
ments in [8]. We use these patterns to evaluate the function-
ality of the environment created by the proposed OmniFlow

Arbitrary cycles such as shown with tasks A, B, C and D can
result in a deadlock as well as infinite loops. Here, task A
is never invoked because it waits for an invocation by task C
indefinitely, whereas task C is not invoked unless task A is also
invoked, thereby resulting in a deadlock condition. Yet another
problem arises when task B is invoked directly by the user:
it is possible that while executing the loop B-C-D-B, the loop
A-B-C-A may start executing inadvertently.

We therefore allow only structured cycles, taking the form of
a self-loop at the respective level of hierarchy. In this exam-
ple, we transform the arbitrary cycles into structured cycles by
replicating the instances of tasks B and C, and forming a hier-
archical taskflow of two task chains with a self-loop in repeating
the tasks in each of the two task chains: A-B-C and B-C-D.

Figure 6: Restructuring a pattern of arbitrary cycles to a pattern with structured cycles.

universal client. An example of the taskflow restructuring
that removes the arbitrary taskflow cycles is illustrated in
Figure 6. Additional comparisons are are summarized in
Figure 7.

As reported in [8], the MQSeries/Workflow [9] supports a
direct implementation of five out of ten patterns, whereas all
other environments, also evaluated in [8], support less pat-
terns. As for the OmniFlow environment, it supports, by
default, seven out of ten patterns listed in the table. Also,
the OmniFlow environment also supports additional pat-
terns, not listed in Figure 7, such as recursion and manual
synchronization. We now briefly discuss each of the patterns
in the order listed in Figure 7:

Synchronizing merge: A synchronizing merge pattern in-
volves two or more tasks that can be executed concur-
rently, followed by a single task, such as tasks A1, A2,
B1 followed by the task C1 in Figure 1. There are a
number of cases that should be considered when two
or more tasks are executed concurrently. Consider an
example of three tasks: A, B, and C, where tasks A
and task B are executing concurrently and task C is
the common successor task for both A and B. A rigid
requirement may stipulate that the task C should not
be invoked unless all of its predecessor tasks, here A
and B, have completed execution. A more flexible sce-
nario may allow task C to proceed when either task A
or task B have been invoked and completed. In gen-
eral, the synchronizing merge pattern in this example
may represent the following three cases:

1. When both tasks A and B are available for exe-
cution, task C should wait for both A and B to
complete execution.

2. When only one of the two tasks, A or B, is avail-
able for execution, task C should be invoked as
soon as A or B completes execution since only
one of the two would have been invoked.

3. When none of the the two tasks is available for
execution, task C should not be invoked all.

A logical AND-join of tasks A and B is sufficient to
resolve the first and the third case, but it fails for
the second case because task B, which is not invoked,
prevents the task C from executing even after task A
completes. On the other hand, changing to a logical

OR-join of tasks A and B resolves the second case, but
fails for the first case.

The problem to invoke task C correctly is solved by
specifying a combination of AND/OR join conditions
using the states of tasks A and B. The join condition
for the current example is thus: OR(AND(A valid, B
valid), AND(A valid, B skip), AND(A skip, B valid)).

Synchronizing L-out-of-M join and abort: The synch-
ronizing L-out-of-M join pattern consists of M concur-
rent tasks, out of which only L tasks are necessary to
be completed to invoke the common successor task.
Once the minimum number of tasks have completed,
we should abort the remaining concurrent tasks which
are still executing. An example of such a pattern has
been discussed in Section 2, Figure 1.

Arbitrary cycles: Most taskflows contain cycles because
a sequence of tasks must be iterated several times to
complete the overall task. However, arbitrary cycles
pattern can potentially lead to infinite loops and dead-
lock conditions, unless designed properly. We can al-
ways transform a taskflow with arbitrary cycles into
a taskflow containing structured cycles only, i.e. task-
flows with self-loops such as shown in Figure 6.

Implicit termination: Implicit termination pattern occurs
when taskflow has tasks that result in early termina-
tion. This can result in termination of the taskflow
while some other concurrent tasks are active. Con-
sider a flow consisting of several tasks, within which
two tasks C and D both have a terminating condition.
Nominally, it is difficult to determine which terminat-
ing nodes have completed when, so that the execution
state of the current task can be changed to completed.

In OmniFlow environment, we prevent such prob-
lems by insisting on a single entry point and a sin-
gle exit point. In the example above, tasks C and D
should both be connected to an EndJoin primitive task.

Multiple instances with apriori runtime knowledge:
It may be necessary to invoke several instances of the
same task. This can happen when the number of dy-
namic instances of a task that are invoked is decided
during runtime by the number of data sets that need
to be processed. We use data-dependent structured
cycles (self-loops) to create dynamic instances of the
task which is then repeated as many times as required
by the number of data sets to be processed.

Workflow Level of Support
Pattern Environments evaluated in [8] OmniFlow Env.

Synchronizing merge MQSeries/Workflow and Inconcert support
merge, others implement using X-OR split con-
structs

yes, ControlJoin construct
directly supports merge

L-out-of-M join Verve uses 1-out-of-M join (discriminator)
combined with AND join and AND splits, hard
to implement in others

yes, ControlJoin construct
directly supports L-out-of-M
join

Arbitrary cycles MQSeries/Workflow, Inconcert has decomposi-
tion construct, Visual WorkFlo, SAP R/3 has
special loop construct

partial, arbitrary cycles need
to be transformed into struc-
tured cycles

Implicit termination Staffware, MQSeries/Workflow, Inconcert ter-
minate processes when idle, others allow only
single exit node

allows only single exit node,
so implicit termination does
not occur

Multiple Instances
(apriori knowledge)

MQSeries/Workflow provides special ‘Bundle’
construct to instantiate number of instances,
others do it sequentially

yes, use structured cycles

Multiple Instances (no
apriori knowledge)

Forte, Verve use loop and parallel split, Vi-
sual WorkFlo supports Release, I-Flow sup-
ports Chained Process Node

yes, use structured cycles

Multiple Instances re-
quiring synchronization

MQSeries/Workflow’s ‘Bundle’ construct al-
lows synchronization of created instances, not
easy to implement in others

partial, limited to simple join
conditions

Deferred choice cancel other choice when selected for execution,
or add an extra task to implement implicit-OR
using explicit-OR construct

yes, ControlJoin construct
directly supports deferred
choice

Interleaved routing pre-define sequence, or use deferred XOR-split
construct, or for petri-net based models, add
extra place as input/output of concurrent ac-
tivities

no, this pattern is not di-
rectly supported

Milestone introduce a boolean variable and check its value
periodically

yes, use ControlJoin con-
struct

Overall MQSeries/Workflow supports a direct imple-
mentation of 5/10 patterns, all others support
less

OmniFlow environment sup-
ports a direct implementa-
tion of 7/10 patterns.

Figure 7: Summary of ten advanced workflow patterns.

Multiple instances with no apriori runtime knowledge:
In addition to invoking task instances dynamically dur-
ing runtime, it may be possible that the number of in-
stances of task invocation is not known prior to task
execution. This can happen when the task instances
depend on one another. For this pattern, we condition
the data-dependent task repetitions that iterate a sin-
gle task a number of times until the required condition
on data set is satisfied.

Multiple instances requiring apriori synchronization:
Taskflows containing dynamic invocations of a single
task would also require synchronizing join so that a
subsequent task can be invoked. Since the number
of instances of a task is only known during runtime,
it is not possible to specify arbitrary join conditions
for synchronizing dynamic instances of a single task.
Therefore in the OmniFlow environment, we only al-
low simple join conditions such as wait for L out of n
task instances to complete.

Deferred Choice: Deferred choice pattern represents a task
where a number of concurrent tasks are enabled for ex-
ecution, however only one needs to be executed. This
can occur when it is possible to execute the same task
on a number of resources, but only one task needs to

be executed depending on which resource is available
for processing.

Consider two tasks, A and B, as instances of the
same task except that they are invoked on different
hosts. In addition, both tasks also have abort edges
connected to each other which are used to abort the
other task as soon as one starts executing.

Synchronizing Milestone: A synchronizing milestone pat-
tern is a special taskflow pattern where a certain task
can be invoked only as long as some other task has not
completed execution.

A simple example for a milestone pattern is the re-
quest to expedite the shipment of a previously pur-
chased item in an on-line store. The shipment of a
purchased item can be expedited only as long as long
as the item has not been shipped. Let task A repre-
sent the purchase order for an item, task B represent
the request for expediting the shipment, task C rep-
resent the shipment of an item, and task D represent
the processing the expediting request.

This problem is resolved by use of the NOT function
in specification of the ControlJoin condition of task D.
This condition prevents task D from executing if task
C has already completed execution.

6. SUMMARY AND CONCLUSIONS
This paper introduces concepts of a taskflow-oriented pro-
gramming paradigm, with task instances representing dis-
tributed stand-alone component programs, such that users,
without assistance from expert programmers, can compose
interactive, executable programs using these components.
Rather than engaging a programmer to write a custom script
each time a composition of a new software system is needed,
user alone can now (1) write a hierarchical taskflow configu-
ration, (2) invoke the universal client (OmniFlow) that reads
the configuration and renders it as a highly interactive GUI,
and (3) interact with the taskflow in a number of ways.

An XML/TclTk implementation of such a universal, user-
configurable client is presented in the companion paper [10].
The recursive schema of component instances is conveniently
captured as an extension of XML in a collaborative distributed
task mark-up language (cdtML) and consists of mainly two
layers: an encapsulated blackbox (single-task) or a white-
box (multi-task) layer, and a task instance layer. A generic
Tcl-XML parser reads both the cdtML schema and the user-
created cdtML taskflow description and outputs a taskflow
description in TclTk. This in turn generates the interactive
GUI as the hierarchical taskflow, waiting for user inputs.
User may choose to interact in any of the following ways:
reconfigure the taskflow interconnections, view or edit data,
descend/ascend the taskflow hierarchy, select the mode of
execution, invoke the taskflow, abort the taskflow (if already
executing), reset the state of the taskflow, etc.

Acknowledgments. We thank Dr. Mladen Vouk, Dr.
Munindar Singh, and Dr. Matthias Stallmann, all from
NCSU, for the encouragement and the constructive feed-
back on formalizing the concepts of taskflow-oriented pro-
gramming paradigm.

7. REFERENCES
[1] C. Szyperski. Component Software: Beyond

Object-Oriented Programming. Addison Wesley, 1998.

[2] C. Szyperski and C. Pfister. Workshop on
Component-Oriented Programming, Summary.
Special Issues in Objected Oriented Programming -
ECOOP, 1997.

[3] Object Management Group Home Page, May 2001.
See http://www.omg.org/.

[4] Java Technology Home Page, May 2001. See
http://www.javasoft.com/.

[5] Component Object Model (COM) Technologies Home
Page, May 2001. See
http://www.microsoft.com/com/.

[6] C. Wiederhold and P. Wegner and S. Ceri. Toward
Megaprogramming. Communication of ACM,
35(11):89–99, 1992.

[7] J. K. Ousterhout. Scripting: Higher Level
Programming for the 21st Century. Article in IEEE
Computer Magazine, March 1998. Also available at
http://scriptics.com/people/john.ousterhout/-

scripting.html.

[8] W.M.P. van der Aalst and A.P. Barros and A.H.M.
ter Hofstede and B. Kiepuszewski. Advanced
Workflow Patterns. Proceedings Seventh IFCIS
International Conference on Cooperative Information
Systems, September 2000. Also available at

http://www.icis.qut.edu.au/~arthur/articles/-

apatterns.pdf.

[9] MQSeries Adaptive MiddleWare , May 2001. See
http://www-4.ibm.com/software/ts/mqseries/.

[10] H. Lavana and F. Brglez. A Universal Client for
Taskflow-Oriented Programming with Distributed
Components: an XML/TclTk Implementation. In The
8th Tcl/Tk Conference at the O’Reilly Open Source
Convention. O’Reilly, July 2001. See also
http://www.cbl.ncsu.edu/publications/-

#2001-TclTk-Lavana.

[11] H. Lavana. A Universally Configurable Architecture
for Taskflow-Oriented Design of a Distributed
Collaborative Computing Environment. PhD thesis,
Electrical and Computer Engineering, North Carolina
State University, Raleigh, N.C., December 2000. Also
available at http://www.cbl.ncsu.edu/-

publications/#2000-Thesis-PhD-Lavana.

[12] F. Brglez, H. Lavana, D. Ghosh, B. Allen,
R. Casstevens, J. Harlow III, R. Kurve, S. Page, and
M. Stallmann. OpenExperiment: A Configurable
Environment for Collaborative Experimental Design
and Execution on the Internet . Technical Report
2000-TR@CBL-02-Brglez, CBL, CS Dept., NCSU,
Box 8206, Raleigh, NC 27695, March 2000.

[13] H. Lavana, F. Brglez, R. Reese, G. Konduri, and
A Chandrakasan. OpenDesign: An Open
User-Configurable Project Environment for
Collaborative Design and Execution on the Internet.
IEEE Intl. Conference on Computer Design, 2000.
Also available at http://www.cbl.ncsu.edu/-

publications/#2000-ICCD-Lavana.

[14] N. Wirth. On the Composition of Well-Structured
Programs. Computing Surveys, 6(4):274–259,
December 1974.

[15] P. Naur. Proof of Algorithms by General Snapshots.
BIT, 6(4):310–316, 1966.

[16] D. Gajski and A. Wu and N. Dutt and S. Lin.
High-Level Sythesis Introduction to Chip and System
Design. Kluwer, 1992.

[17] G. DeMicheli. Synthesis and Optimization of Digital
Circuits. McGraw Hill, 1994.

[18] W.M.P. van der Aalst and A.H.M. ter Hofstede.
Verification of Workflow Task Structures: A
Petri-net-based approach. Information Systems
Journal, March 2000.

[19] G. A. Agha and I. A. Mason and S. Smith and C.
Talcott. A Foundation for Actor Computation.
Journal of Functional Programming, 1996. Also
available at http://osl.cs.uiuc.edu/Papers/-

actor-semantics.ps.

[20] R. J. R. Back and Kuri-Suonio . Distributed
Co-operation with action systems. Transactions on
Program Languages and Systems, 1988.

[21] L. Lamport. Temporal Logic of Actions Home Page,
May 2001. See http://research.compaq.com/SRC/-

personal/lamport/tla/tla.html.

[22] T. Kleymann. Hoare Logic and Auxiliary Variables.
Formal Aspects of Computing, 11(5):541–566, 1999.

