
Building Mission-Critical CAD Applications
with Tcl/Tk

Michael McLennan (mmc@cadence.com)
Cadence Design Systems, Inc.

Abstract

The Signalscan waveform viewer has been an
extremely successful product for many years, but it reached
a point in its life cycle where it needed to be rewritten. In
this paper, we’ll describe how we used Tcl/Tk to rebuild and
revitalize this mission-critical tool.

Introduction
These days, integrated circuits are designed and tested

in software, long before any chips are actually produced.
Designers use a Hardware Description Language (HDL)
such as Verilog or VHDL to write code that describes the
functionality of their chip. They use special-purpose com-
puter-aided design (CAD) tools to compile their HDL code,
simulate it, and convert it to the actual layout of transistors
for their chip.

Complex designs have millions of transistors with mil-
lions of connections between them. The signals on the vari-
ous connections must be monitored during the debugging
process to ensure that the chip is working correctly. Each
signal might fluctuate on the time scale of nanoseconds

(10-9 s), and a simulation might run for many milliseconds

(10-3 s). So it is not uncommon for a signal to have millions
of high/low transitions, and for designers to look at several
hundred signals in one sitting. Needless to say, any tool that
plots that much data must be built in an extremely careful
and efficient manner.

Signalscan is such a tool. Signalscan has been in
widespread use in the integrated circuit design business for
many years, and it brings in millions of dollars in product
revenue each quarter. The code base had reached a point,
however, where it had become increasingly difficult to
maintain, and nearly impossible to enhance. Signalscan
needed to be rewritten from the ground up, but the end result
had to be robust, high-performance software that would
continue to command millions of dollars in revenue.

To rebuild this mission-critical tool, we chose a devel-
opment platform that is robust, object-oriented, cross-plat-
form, and state-of-the-art in speed and functionality. In
short, we chose Tcl/Tk.[1]

Some people think of Tcl/Tk as another VisualBasic—
as a graphical user interface builder for toy projects. But it
is much more than that. Tcl/Tk represents a paradigm for
building software with a mixture of different components,
often written in different languages, all glued together with

a little Tcl code. In this paper, we’ll show how we used Tcl/
Tk on many levels—as a repository of contributed widgets,
as a platform for building our own customized plotting wid-
gets, as an object-oriented application language, and as a
language for customer extensions.

1. The Tcl/Tk Paradigm
Tcl/Tk applications are a mixture of Tcl and C code.

Learning how to apply the two different languages is diffi-
cult at first, but once mastered, it becomes a powerful new
paradigm for building software. In a nutshell, C code is used
to create solid building blocks with good performance, and
Tcl code is used to coordinate the C code in a flexible man-
ner. The result is a blend of speed and flexibility that cannot
be achieved with any single language.

Let’s see how this dual-language approach applies to
the new Signalscan tool, which we currently refer to as Sig-
nalVision. Figure 1 shows the SignalVision waveform win-
dow. The plotting area on the right-hand side, which
consumes most of the window, is composed of three cus-
tom-built widgets. Themarkeraxis widget (on top of the
three) shows the time scale and a number of important time
points marked with little flags calledmarkers. Thesig-

nalbox widget (in the middle) plots a list of logical signals
and bus values. Thezoomaxis widget (along the bottom)
shows the current view relative to the entire time scale. It is
a glorified scrollbar, with the time axis and markers drawn
in the trough. It also has extra controls which allow the user
to adjust not only the bubble, but the edges of the bubble as
well.

All of these widgets are implemented in C code, so
they are all highly optimized. But they are created and
coordinated via a few simple Tcl commands. For example, a
signalbox is instantiated with the following Tcl code:

 signalbox .sbox -background {black gray}
 grid .sbox -row 1 -column 2 -sticky nsew

The widgets communicate with one another by shar-
ing data in a Model-View-Controller (MVC) pattern [2].
For example, thesignalbox and themarkeraxis widget
sitting above it share a common set of markers. When a
marker appears in themarkeraxis widget, the line must
also extend down through thesignalbox .

Markers are stored in amarkerdata object. Like the
widgets, this object is implemented in C code, but con-
trolled and connected to the widgets from the Tcl level. For

- 2 -

example, amarkerdata object is created and plugged into
the widgets as follows:

 markerdata md
 .sbox configure -markerdata md
 .maxis configure -markerdata md

A marker is created with the following Tcl code:

 set m [md marker create positional \
 -time 1000]

As soon as the marker is created in themarkerdata object
(model), the widgets (views) receive notifications and
redraw themselves with the new cursor. The marker cre-
ation, notifications, and redraw operations execute at the
speed of C code, even though we used a Tcl command to
initiate the whole operation.

If any other part of the application is interested in
marker notifications, it can register to receive them. For
example, suppose we have a combobox full of marker
names. It must be updated whenever a new marker is cre-
ated. We could bind to the marker creation event as follows:

 md notify add combo !markerCreate fixit

This creates a notification calledcombo on the marker cre-
ation event for the objectmd. Whenever the event occurs,
the fixit command will be invoked to handle it.

Extra arguments are appended to thefixit command
to communicate information about the event. Each event
has different data associated with it. When a marker is cre-
ated, for example, the callback receives the keyword
marker followed by the marker name. This data is usually

absorbed asargs and converted to a Tcl array for process-
ing:

 proc fixit {args} {
 array set info $args
 puts “created marker $info(marker)”
 }

Here is another example of a notification which is
handy when debugging the application:

 md notify add debug !all echo

This adds a notification tagged with the namedebug to all
events on thismarkerdata object. Any event will trigger a
call to theecho procedure, which might be implemented as
follows:

 proc echo {args} {
 puts “EVENT: $args”
 }

To turn off debugging, we simply remove the notification:

 md notify remove debug

Getting back to our plotting widgets, we can add a lit-
tle more Tcl code to control how the user interacts with the
markers. This is the “controller” part of the MVC pattern.
For example, the following commands allow the user to
click the mouse to reposition the marker we created earlier:

 bind .sbox <ButtonPress-1> {
 set time [.sbox convert x2t %x]
 md marker configure $m -time $time
 }

Figure 1: Main window of the SignalVision waveform plotting tool. The tool is a mixture of custom-built widgets, BLT
widgets, and [incr Tcl/Tk] mega-widgets, all stitched together with Tcl code.

- 3 -

Having the “controller” part in Tcl makes it easy to
change the behavior for different tools, or for different
modes of the same tool. By separating the behavior of the
widgets from their implementation, we have achieved con-
siderable flexibility with no significant loss of performance.

2. Integrating Other Toolkits
Tcl/Tk has a large number of contributed widgets and

extensions, and we used some of these to build our applica-
tion. For example, the signals in the plotting area are stored
in ablt::tree data object from the BLT toolkit [3]. This
tree has a rich, C language API which supports our high-
performance plotting, as well as a flexible Tcl interface.
The tree is displayed on the left side of the window by a
blt::hierbox widget, which we modified slightly to han-
dle our own special requirements.

The Utility window shown in Figure 2 is also com-
posed of BLT widgets. This window acts as an editor for
the properties of all objects in the application. The various
object types are organized into pages by ablt::tabset

widget; selecting a tab brings up the editor page for that
object type. The dotted line below the tab allows you to tear
a page out of the notebook and onto the desktop. That way,
you can cut and paste between different object types, or edit
multiple object types at the same time.

TheMnemonic Map page in the Utility window con-
tains a table of entries which define the map. If a signal
value matches the glob-style pattern in theValue column, it
is displayed by using the string in theMnemonic column
with the colors shown in theStylecolumn. The style for the

selected row can be edited by adjusting the controls in the
preview area at the bottom of the window.

The mnemonic map table was implemented by using
theblt::hiertable widget. This widget normally shows
a hierarchy with plus/minus controls on the left, and a series
of columns with related information on the right. We’ve
configured the widget here to suppress the hierarchy col-
umn, leaving the basic table. We chose this widget instead
of the TkTable package [4] for a number of reasons: It does
a better job of resizing itself to properly display its contents;
it has an underlying tree object to support its data, so rows
can be inserted/deleted more easily; and it supports smooth
scrolling.

We also borrowed a few widgets from the excellent
BWidget package [5], we created custom mega-widgets
with the [incr Tk] package (described later), and we added
drag&drop support via the Tkdnd package [6].

Having a large library of OpenSource extensions was
a tremendous boost to this project. The various packages
were all quite useful, but we could not have built this appli-
cation without the BLT toolkit. In our opinion, it is the best
of the widget packages available for Tk.

3. Object-Oriented Development
Most of our plotting data is stored in custom-built data

objects such as themarkerdata object or theblt::tree .
But plotting is just a small part of our overall application.
There are toolbars, preferences, and scores of dialogs. If we
were to build customized data objects for each part, we
would quickly run out of time and funding.

Figure 2: Utility window of the SignalVision waveform plotting tool. Pages are organized in a BLT tabset widget. The
table shown here is a BLT hiertable widget with the hierarchy column hidden.

- 4 -

Instead, we used the [incr Tcl] extension [7-9] to han-
dle most of our data at the Tcl level. [incr Tcl] extends the
Tcl language to support object-oriented programming. It
has single and multiple inheritance, virtual methods, static
data members and member functions, and so forth. It is pat-
terned after C++, but integrated into the Tcl mindset, so
many people find it easy to learn and a natural fit with the
rest of Tcl/Tk.

[incr Tcl] also supports our performance requirements.
All member functions are byte-code compiled, and access to
data members is highly optimized. So the overall perfor-
mance of [incr Tcl] objects was more than sufficient for
much of our application. [incr Tcl] also allows you to inte-
grate C code with your Tcl code, so while a class might be
defined at the Tcl level, its methods could be implemented
in C. This not only helped us optimize critical parts, but
also helped us raise useful C functions to the Tcl level.

For example, we have a small library of C functions
that support thenotify methods described in Section 1.
We wanted to use the samenotify methods for all objects
in our application—including those implemented at the
[incr Tcl] level. So we created aNotifier base class.
This class is defined at the [incr Tcl] level, but its methods
are implemented in C, and therefore have access to our noti-
fier C library.

Having defined this base class, we can create many
derived classes that support notifications. Consider the sim-

ple Toaster class shown in Figure 3. This class has four
events: !configure , !destroy , !crumbs and!burn .

The !configure event is inherited from the
Notifier base class. It is triggered automatically when-
ever a public variable is modified via theconfigure

method. The!destory event is also inherited. It is trig-
gered automatically when an object is being destructed.

The !crumbs and!burn events were added specifi-
cally for Toasters. These new events are registered in the
Toaster constructor. The!crumbs event is registered with
-fireonbind , so any client that adds a notification for
!crumbs will immediately be notified of the current crumb
count. This is similar to the way a Tk listbox notifies a
scrollbar of its current view whenever the
-yscrollcommand option is set.

Once registered, the events can be triggered by any
method within the class. Thetoast method, for example,
always triggers a!crumbs event to signal a new crumb
count. Two bits of information are added to the event: the
keywordcurrent and the current crumb count. Suppose
you were to create a Toaster and bind to its!crumbs event
as follows:

 proc show_crumbs {args} {
 array set info $args
 puts "crumb count: $info(current)"
 }

Figure 3: Simple example of an [incr Tcl] class which supports notifications by using our Notifier base class.

itcl::class Toaster {
inherit Notifier

 public variable heat 3

 constructor {args} {
register !crumbs -fireonbind
register !burn

 eval configure $args
 }

 method toast {nslices} {
 if {$crumbs > 50} {

trigger !burn current $crumbs heat $heat
 error "== fire! fire! =="
 }
 set crumbs [expr $crumbs+$heat*$nslices]

trigger !crumbs current $crumbs
 }
 method clean {} {
 set crumbs 0

trigger !crumbs current 0
 }
 private variable crumbs 0
}

- 5 -
 Toaster fred -heat 4
 fred notify add main !crumbs show_crumbs

Since the!crumbs event was registered with
-fireonbind , this last statement would trigger an immedi-
ate call toshow_crumbs as follows:

 show_crumbs current 0

This would send the following message to standard output:

 crumb count: 0

Further calls to thetoast method would cause addi-
tional notifications:

 % fred toast 2
 crumb count: 8

 % fred toast 1
 crumb count: 12
 ...

At some point, the Toaster’s crumb tray would fill to its
limit, and thetoast method would trigger a!burn event,
including the current crumb count and heat setting as addi-
tional parameters.

We used the same principles to create many other
kinds of data objects for the SignalVision application. For
example, the list of mnemonic maps (shown on the left-hand
side of Figure 2) is stored in aListManager class. When a
new map is added to the list, theListManager triggers a
!insert event. Many different parts of the application
receive this event—including the listbox in theMnemonic
Maps tab, theFormat menu on the main window, and so
forth—and they update themselves accordingly. Having
data objects which support these kind of notifications
proved to be invaluable. It provided a simple way to man-
age the complex interactions in this gigantic tool.

4. Mega-Widget Development
[incr Tcl] also supports mega-widget development

[10]. Mega-widgets are new classes of widgets constructed
with Tk widgets as component parts. They look and act just
like Tk widgets, but they are created with [incr Tcl] code
instead of C code. As a result, they can be created in a frac-
tion of the time it took to create custom-built widgets, such
as themarkeraxis and thesignalbox .

The combination of amarkeraxis , asignalbox ,
and azoomaxis widget is an example of a mega-widget.
Having this mega-widget makes it easy to create this stack
of widgets and set up their default bindings. This, in turn,
makes it easy to create two such stacks and put them side-
by-side, thereby implementing a split-screen capability.

We’ve implemented many other mega-widgets as well,
including comboboxes with type-ahead search capability,
buttons with a drop-down menu of variant choices (like the
history buttons in Internet Explorer), listboxes with auto-
matic scrollbars that pop up as needed, progress bars, paned
windows, and so forth.

5. Multi-Level Undo
Multi-level “undo” was another requirement for our

new tool. We implemented “undo” by leveraging the power
of Tcl. We keep two variables at the Tcl level: an “undo”
stack and a “redo” stack. Each stack is a list of Tcl com-
mands needed to undo/redo an operation. For example, sup-
pose the user deletes a signal. The commands to delete and
recreate the signal are added to the “undo” stack as follows:

 set redoCmd {signal_delete top.a}
 set undoCmd {signal_insert top.a 10}
 lappend undoStack [list $redoCmd $undoCmd]

When the user invokesUndo, we grab the last pair of com-
mands from theundoStack variable and invoke the
undoCmd part. Then, we push the set of both commands
onto aredoStack variable. When the user invokesRedo,
we grab the last pair of commands fromredoStack , invoke
theredoCmd part, and push the commands back onto
undoStack .

Since the whole application is built with Tcl com-
mands, there are no limitations on what can be undone or
redone. We have a rich syntax for logging and replaying
operations that we didn’t have to invent. It comes for free
with Tcl.

6. End-User Customization
Many users like to customize a tool by adding their

own buttons and panels, thereby creating their own “mac-
ros” for common operations. In some tools, this capability
is limited to a few buttons or a customized menu, which can
be programmed from a limited palette of operations.

Since our tool is built with Tcl, we already have a rich
syntax for controlling the tool. We also have an extensive,
well-documented collection of Tk widgets that we can
expose to customers. We must be careful, however, to make
sure that our graphical interface is insulated from any code
that the customer supplies. If the customer were to set a
variable in their code, for example, it can’t crash our GUI.

We can protect our code by executing any customer
code in a separate, “safe” interpreter [11]. Tcl supports
multiple interpreters in any one application. Each inter-
preter has its own set of commands, variables, and widgets.
We can insulate the customer from details of our implemen-
tation by providing a well-documented Application Pro-
gramming Interface (API) of commands in the “safe”
interpreter. This API includes commands to add buttons to
the main window, and to create separate pop-up windows of
user-defined controls. So customers can add new features,
and these features are integrated seamlessly into the tool.

Customer-supplied modules are treated as “plug-ins”
for the application. Plug-ins can be enabled and disabled
from the Prefereces dialog.

- 6 -

Conclusion
Layering Tcl/Tk code on top of C creates a potent

mixture of speed and flexibility. It has allowed us to offer
advanced features such as split-screen capability, multi-
level undo, and end-user customization with little extra
effort. The expressiveness and flexibility of Tcl has allowed
us to rewrite several hundred thousand lines of code—more
than 20 man-years of effort—in a little under a year. The
finished product offers the same level of performance as the
original tool, but much more flexibility. Tcl has given our
product new life, along with a solid code base that can be
extended for many years to come.

References

[1] John K. Ousterhout, “Tcl and the Tk Toolkit,” Addison-
Wesley, 1994. Tcl is available as OpenSource from
http://sourceforge.net or http://dev.scriptics.com.

[2] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides,Design Patterns, Addison-Wesley, Reading,
MA, 1995.

[3] The BLT Toolkit was created by George Howlett, and
can be downloaded from
http://www.tcltk.com/blt/

[4] The TkTable package is available from
http://tcl.ActiveState.com/community/hobbs/tcl/capp/

[5] The BWidget package is available from
http://sourceforge.net/projects/tcllib

[6] The Tkdnd package is available from
http://www.iit.demokritos.gr/~petasis/tcl/tkDND/
tkDND.html

[7] M. J. McLennan, “[incr Tcl]: Object-Oriented
Programming with Tcl,”Proceedings of the Tcl/Tk
Workshop, University of California at Berkeley, June 10-
11, 1993.

[8] Chad Smith,[incr Tcl/Tk] from the Ground Up,
McGraw-Hill, 1999.

[9] [incr Tcl] is available as OpenSource from
http://www.tcltk.com/itcl/ or
http://sourceforge.net or
http://dev.scriptics.com.

[10] M. J. McLennan, “[incr Tk]: Building Extensible
Widgets with [incr Tcl],”Proceedings of the Tcl/Tk 1994
Workshop, New Orleans, LA, June 23-25, 1994.

[11] Mark Harrison and Michael McLennan, “Effective Tcl/
Tk Programming: Writing Better Programs with Tcl and
Tk,” Addison-Wesley, 1997.

Acknowledgments
Thanks to Ahran Dunsmoor, Tom Fitzpatrick, Mike

Floyd, Doug Koslow, Mark Harris, Deb Mandel, Rick Meit-
zler, Mary Nguyen, and other members of our team for their
contributions. Thanks also to Barb Henry, Sathyam Pat-
tanam, and Rahul Razdan for supporting this work.

