The webfiles Package
Version 1.0.1

Mark Potse *
2002/03/05

1 Introduction

The webfiles package makes it possible to plug the documentation of CWEB! and Spidery WEB programs
into a 'TEX document. One can include any number of webs by including the weave processor’s output
with the command

\webfile [(options)]{(filename)}

where (filename) is the name of the .tex file (with or without the extension) that is output by the weave
processor and (options) is a comma-separated list of options, as explained later. Of course, the webfiles
package must be loaded:

\usepackage [(options)] {webfiles}

in the preamble of the document. The package recognizes the same options as the \webfiles command.
This manual does not describe the usage of WEB systems themselves; they have their own manuals[1,
2, 3]. In what follows, it is assumed that you read at least one of them, but note that some of the
information here overrides what was said there.
This package is based on the cweb style by Joachim Schrod (even this manual is based on his). Apart
from the fact that, with this package, web’s are ‘plugged in’ while in Schrod’s style they are the main and
only body, there is a number of differences:

1. This package can also work with Spidery webs.
. The layout (determined by the document class and maybe other packages) is not changed.
. Existing counters are not affected.
. The section numbers in weave’s output are used.

2

3

4

5. The contents of all webs are listed in a “List of Programs”, if the user wishes so.

6. The user may choose if pagebreaks may occur inside sections. If not, the result is a ‘ragged bottom’.
7

. A section is only printed if it is ‘on’. (Refer to the documentation of a WEB to see what ‘on’ means
in this context.)

8. The multicol package is used, if present, to typeset the identifier index in two columns. Therefore
a pagebreak between the identifier index and the list of refinements is no longer necessary. If
multicol cannot be found, ITEX’s \twocolumn is used.

9. The index and list of refinements can be suppressed in the X TEX document.
10. Format (@f) statements can be suppressed in the WTEX document.

11. Support for hyperlinks is included, as well as direct support for PDFTEX.

*Medical Physics Department, University of Amsterdam.
Email: M.Potse@amc.uva.nl
lyersion 3, this package does not work with older versions

2 §2 CUSTOMIZATION

1.1 The overall structure

The philosophy behind this package is that you, like it’s author, may wish to import more than one
WEB program, maybe in more than one programming language, in a single BTEX document. With this
package, you can regard to the .web file as just a part of your document, like the parts that you \include
when writing a large document in more than one file, and in the documentation parts of the WEB program
you can use all features of INTEX the way you would in that case.

CWEB Version 3.0 introduced the notion of a starred section’s “depth.” As in the layout produced by
cwebmac.tex the depth value does ounly influence the web’s table of contents (and “List of Programs”),
not the rendering of the title within the text. (cwebmac.tex is the original, plain-based macro package
used to typeset CWEB sources; I refer henceforth to it as the “plain version.”)

The document structure is tagged in the mother document, with \section and such. Although it
is not forbidden to use sectioning commands in the documentation part of the WEB program, it doesn’t
seem useful to do so. The only place where a sectioning command could be useful is in the limbo section.

The ‘mother document’ must load the “webfiles” package:

\usepackage{webfiles}
Then you can include a WEB program with the following command:
\webfile{(filename)}

where (filename) is the .tex file that is output by a weave processor.
The resulting structure of the mother document is exemplified in figure 1. Text may be inserted
anywhere inbetween the tags shown there.

1.2 Notes on running weave processors

e Recent versions of Levy & Knuth’s cweave should be run with the +e flag to work correctly with
the webfiles package (if this flag is omitted, program code fragments between vertical bars in the
documentation part will not be printed correctly).

e If cweave or a Spidery weave is run with the -x option, a (harmless) error message occurs about a
file that “ended while scanning use of \end”.

2 Customization

Both the \webfile command and the \usepackage{webfiles} command accept an optional argument
that may contain a comma-separated list of options. Options specified to \usepackage act as global
defaults that can be overridden in the optional argument to \webfile. Therefore each option has an
opposite. The recognized options are summarized in table 1, and discussed in the following sections.
Other customizations are possible through the redefinition of macros and the setting of counters; the
most important of these will be explained in this section.

2.1 The index and the list of refinements

An identifier index and a list of refinements are created at the end of each WEB document, if you didn’t
call weave with the -x option?. You can specify an introductionary text for the index with the tag
\xwebIndexIntro, the introduction is the argument of this tag. To suppress generation of an identifier
index, even when weave was not called with the -x option you can use an optional argument to the
\webfile command; for example:

\webfile[noindex]{foo}

To suppress identifier indexes in all web’s, use this option in the \usepackage command:

\usepackage [noindex] {webfiles}

You can use the index option in the \webfile command to override this global default.
The same applies to the list of refinements, using the options reflist and noreflist.

2The ‘-x’ option suppresses output of the index and reflist—see the documentation.

§2 CUSTOMIZATION 3

\documentclass{report}
\usepackage{webfiles}

\begin{document}

\title{Three solutions for the Travelling Salesman problem}
\author{Joe L. User}

\maketitle

\tableofcontents % optional
\listoffigures % etc., optional
\listofprograms % optional

\chapter{A PSPACE solution for the Travelling Salesman}
\webfile{pspace}

\chapter{The Travelling Salesman problem, solved by Simulated
Annealing}
\webfile{anneal}

\chapter{A Neural Network solution for the Travelling Salesman}
\webfile{neu_net}

\appendix
\chapter{The Travelling Salesman Problem, solved by telepresence}

\input{internet-user}

\end{document}

Figure 1: Exemplified document structure

2.2 The table of contents

Each web document gets its own table of contents. It can be suppressed with the nocon option; the
opposite option is contents. You can produce the table of contents of any web document in any position
with the \xwebContents command. This command takes one argument: the basename of the web
document, and does not work with Spidery webs (yet?).

The tables of contents are produced like all IATEX’s tables of contents etc., in the second BTEX run.
They are stored in a file with name (basename).con, where (basename) is the basename of the web
document.

2.3 The List of Programs

In addition to the table of contents there is a “List of Programs”, analogous to the “List of Figures”
etc. that standard IATEX provides. The list can be produced with a

\listofprograms

command, which can be placed at any position. It is customary to put it at the beginning of the mother
document, after it’s table of contents. As with the List of Figures, the List of Programs is generated
at the second BKTEX run. It can list programs, main sections and normal sections; the default is to
list only programs and main sections. You can control what goes into the list by setting the counter
xwebLopDepth:

3] consider releasing a revised version of Spider that is more compatible with CWEB, and has less bugs

§2 CUSTOMIZATION

option opposite effect

index* noindex print identifier index

noindex index don’t print identifier index

reflist*® noreflist print List of Refinements

noreflist reflist don’t print List of Refinements

contents* nocon print table of contents

nocon contents don’t print table of contents

allsections™ onlychanges print all sections

onlychanges allsections print only changed sections

showformats® hideformats show @f declarations

hideformats showformats don’t show @f declarations

raggedbottom™ flushbottom try not to break modules across pages

flushbottom raggedbottom try to create a flush bottom, break modules if neces-
sary

hyperref nohype make hyperlinks using hyperref package

pdftex nohype make hyperlinks and PDF outlines with PDFTEX

nohype* e no hyperlinks

nofiles writefiles dont’t write a contents file (equivalent to setting
\setcounter{xwebLopDepth}{-9}).

writefiles™ nofiles do write a contents file. (equivalent to setting

\setcounter{zwebLopDepth}{9}).
Table 1: Webfiles options. Defaults are tagged with a *.

e Normal sections get into it if xwebLopDepth is greater than or equal to 10.
e All starred sections that have a depth smaller than xwebLopDepth will be mentioned.
e Programs will be mentioned unless xwebLopDepth is smaller than or equal to —10.

By setting xwebLopDepth inbetween \webfile commands you can handle each WEB file differently, if you
wish. The default value is 9. It is a ITEX counter, so its value can be changed using the \setcounter
and \addtocounter commands.

The PDF outline (if you use PDFTEX) can be controlled in the same way, using the counter
xwebOutlineDepth, except that normal sections never get into the outline.

The entries for the List of Programs are put into the file “(jobname).lop”, where (jobname) is
the jobname that TEX chose for the mother document (usually the name of the .tex file, without the
extension). Edit this file only if you're desparate, as with the .toc and .1lof files etc.

2.4 Newpages

The default behaviour of the webfiles package is never to break sections across pages if they fit on a
single page. If sections may be broken across pages, the webfiles package is able create ‘flush bottom’
pages. To enable this, specify the flushbottom option to the \webfile or the \usepackage command.
To re-enable the default behaviour locally, specify the raggedbottom option.

A main section can start a new page regardless if it will fit on the current one. To change this
behaviour, set the counter xwebSecNoEject, which keeps the lowest group level where no new page is
started at a main section. The default is 3. It is a IXTEX counter, so its value can be changed using the
\setcounter and \addtocounter commands.

2.5 Hyperlinks

If the hyperref option is specified, all module references are turned into hyperlinks using the hyperref
package[4]. To use this feature, you have to import the hyperref package yourself, before importing the
webfiles package, e.g.:

\usepackage [hypertex] {hyperref}

83 PROBLEMS AND RESTRICTIONS 5

\usepackage [hyperref]{webfiles}

Alternatively, with the pdftex option, direct support for PDFTEX can be enabled. This provides the
same look and feel as the pdfcwebmac macros, including the ‘PDF Outline’, but of course works only
with PDFTEX.

Both types of hyperlinked references can be switched off with the nohype option.

2.6 Output in other languages

WEB documentation can contain a few—predefined—informal texts. As in the plain version, you can
change these texts, for example to obtain output in an other language than English, by redefining some
macros. The macro names concerned are listed below, together with their default definitions.

\def\xwebIndexName{Index of \xwebJobname}
\def\xwebReflistName{List of Refinements in \xwebJobname}
\def\xwebCRAlso{\xwebCrossRef{See also sectionl}}
\def\xwebCRsAlso{\xwebCrossRef{See also sections}}
\def\xwebCRCite{\xwebCrossRef{This code is cited in section}}
\def\xwebCRsCite{\xwebCrossRef{This code is cited in sectionsl}}
\def\xwebRLCite{\xwebCrossRef{Cited in section}}
\def\xwebRLsCite{\xwebCrossRef{Cited in sections}}
\def\xwebCRUse{\xwebCrossRef{This code is used in section}}
\def\xwebCRsUse{\xwebCrossRef{This code is used in sections}}
\def\xwebRLUse{\xwebCrossRef{Used in section}}
\def\xwebRLsUse{\xwebCrossRef{Used in sectionsl}}
\def \xwebCRChanged{%
\xwebCrossRef{The following sections were changed by the change file:1}J,
\let*\relax}
\def\xwebCREt{ and~}
\def\xwebCRsEt{, and~}
\def\xwebLopName{List of Programs}
\def\xwebTocName{Contents of \xwebJobname}
\def\xwebRefMacrosHere{Preprocessor Definitions}
\def\xwebSectionName{Section}
\def\xwebPageName{Page}

2.7 Documenting changefiles

If a web file is included that has some sections changed by a changefile you can have the \webfile
command print only the changed sections by giving the onlychanges option. As with all options, this
option can also be given to the \usepackage command. Its opposite option is allsections. Specifying
onlychanges is equivalent to saying \let\maybe=\iffalse in the plain version.

2.8 Miscellaneous

You can control the appearance of web section numbers by redefining the appearance of \thexwebModule.
Its default definition is \arabic{xwebModule}.

With the noformats option, you can suppress the printing of @f specifiers. (In cweb, you can also
use @s instead of @f, that way you can control which format specifiers get printed and which don’t).

3 Problems and Restrictions

Restrictions:

e Please be aware that the vertical bar (‘|’) is used by WEB to delimit small program code pieces in the
documentation parts, and is therefore processed by weave. You cannot use it for BTEX anymore.

6 §3 PROBLEMS AND RESTRICTIONS

In particular, you cannot specify rules for the tabular or the array environment. Since you
probably want to do so: You have two choices left:

1. Make sure you have the array package (by Frank Mittelbach and David Carlisle) installed.
Then you may use the package cwebarray, it defines ‘I’ (that’s an uppercase i) as a specifier
for rules. I.e., instead of

\begin{tabular}{1|1}

you have to write

\begin{tabular}{1I1}

2. Use ‘°°7¢’ instead of ‘|’ Le., instead of \begin{tabular}{1|1} you may write
\begin{tabular}{1""7cl}.

These two choices are compatible, you may use both in one document. Needless to say, I consider
the first alternative the better one.

e One cannot use restricted program mode in moving arguments. Most notably, this is annoying in
the titles of starred sections and in \caption tags.

e Neither a refinement name nor an index entry made by @~ may consist of a single dot-accented
term. l.e., you must not write ‘@<\.0@>’, ‘@~\.0@>’, or even ‘@"\.{foolish}@>’. Of course you
may write ‘@"\.o accent@>’ or ‘@< Handle accent \.o @>’.

e If weave is run with the -x option, a (harmless) error message occurs about a file that “ended while
scanning use of \end”.

3.1 Reserved Control Sequences

The following tags are reserved and must neither be used nor redefined:

\ATL
\B
\M
\N
\PB
\Y

\9 is already explained in the CWEB user manual: It’s a special control sequence used for the index
entries tagged with ‘@:’. Its default definition is setup in such a way that you can cheat weave concerning
the sort order of this entry: If you enter ‘@:sort}{print@>’ you will get an index entry “print” next to
the place where the index entry “sort” would be. But you're allowed to change this default definition.

The names of all other control sequences defined by this package—besides the common IATEX control
sequences—start with xweb. Please don’t define new control sequences starting with this prefix. (The
control sequences that don’t have a ‘@’ or ‘_’ in them may be redefined to change the appearence of the
WEB document, check the implementation’s documentation for their meaning.)

3.2 Problems
Since this is still a test version of the package, there are some known bugs and problems.
Known Bugs:
e The presentation of @1 redefinitions is not proper. But it wasn’t in the plain version, either.

Problems:

§4 TEXNICAL DATA 7

e One cannot use an other basic font size than 10 pt. A few symbol definitions and layout parameters
depend on this.

e C++ comments in CWEB (i.e., from // to the end of the line) are typeset as C comments. This is
especially bad if they are used for a whole block of comment lines, as it is quite common. Please
put such comment blocks in the documentation part.

4 TgXnical Data

WEB programmers who used the plain version before should note that the macros from cwebmac.tex and
webkernel .tex are not available anymore. E.g., you cannot use \. to typeset typewriter material; use
either \texttt or \verb, as it fits the situation. On the other hand, now you're able, for example, to use
\. for the dot accent, \\ will be the newline again (as usual in WTEX), you can define \C++ for the C++
logo, etc.

Another detail for ex-plainies: The “List of Programs” that replaces the table of contents is produced
by the \listofprograms tag (during the second IX*TEX run), not automatically. But this is the standard
ETEX way of handling such things.

There are now two kinds of indexes, both optional: Those that are created by weave, which come at
the end of each WEB program, and the index of the mother document, that is, the one that is created with
\index commands and the theindex environment (possibly with the help of MakeIndexz[5]). There are
no problems in using these together, but it’s for you to decide in which of them the entries must go that
you specify yourself. You may, with a few definitions, get the indexes of the WEB files into the index of
the mother document.

The modules are put in a new environment, called xwebModule. They are not made into \sections
and such, and they are numbered in a single layer, in exactly the same way as in the plain version, so that
the cross-reference information output by weave will always be right. (It refers literally to the section
numbers.)

You can change this, e.g., you can let xwebModules be \sections, but you'll have to change the way
cross-references are printed too. For more information, consult the documentation[6].

The webfiles package is documented with the doc package, and uses docstrip to create its .sty
files. See the BTEX Companion or the README file that goes together with the webfiles package for
instructions on how to use these to change the sources or produce typeset documentation.

This package reserves the namespace xweb.

4.1 Files

webfiles.sty is the main package file. It suffices to handle CWEB files.

cwebmac.tex is the macro package that is input on the first line of the .tex file that cweave creates. It
contains macros that enable TEX to handle CWEB, but it can see if it’s being input by BTEX (instead
of TeX), and, if so, it won’t define anything.

zweb.tex is the file that is input on the first line of output of zweave, where zweave is a Spidery weave.
It inputs webkernel . tex, and defines additional macros that are specific for zweb. The person that
made zweb should make sure that these macros work with BTEX too.

webkernel.tex is input by zweb.tex; it is the Spidery analogon of cwebmac.tex, but it contains no
language-dependent macros: These are concentrated in the zweb. tex files. If webkernel.tex sees
that it is being input by I¥TEX, it inputs swebbind. sty, and doesn’t define anything, else it defines
the macros that enable TEX to handle a Spidery WEB.

swebbind.sty contains redefinitions of some macros in webfiles.sty that make them able to handle
Spidery WEBSs.

webfiles.sty and swebbind.sty are supplied with the webfiles package. So is webkernel.tex;
this file replaces the file of the same name that goes together with Spider. The zweb. tex files are supplied
with their respective (Spidery) WEBs. cwebmac.tex is supplied with CWEB.

8 §6. THE DOCUMENTATION DRIVER.

4.2 Bug reports

If you have any comments on the webfiles package that may be of interest to others, please report them
to the author:

Mark Potse

Medical Physics department,

Academic Medical Center
Meibergdreef 15,

1105 AZ Amsterdam, The Netherlands.
email: M.Potse@amc.uva.nl

You may be able to fix bugs or customize the package after consulting the documentation that goes
together with this manual.

5 Acknowledgements

Most of the code in this package was shamelessly stolen from the cweb style by Joachim Schrod (even
this manual is based on his). Thanks to Andreas Scherer and Amelie Stein for useful comments. And if
God had not given us TEX it would have been necessary to invent it.

6. The documentation driver.

The webfiles package is documented with docstrip. This code will generate the documentation. Since
it is the first piece of code in the file, the documentation can be obtained by simply processing this file
with BTEX 2¢.

1 (xdriver)

2 \documentclass [twoside] {1txdoc}

3 \usepackage{xwebdoc,array, cwebarray}

4 \pagestyle{headings}

5 \renewcommand\MakePrivateLetters{\makeatletter\catcode‘_=11\relax}
6 \IndexPrologue{\section*{Index}/,

7 \markboth{Index}{Index}%

8 The italic numbers denote the code lines where the corresponding
9 entry is described, underlined numbers point to the definition,
10 all others indicate the places where it is used.}

11 \EnableCrossrefs

12 \CodelineIndex % \RecordChanges
13 % \OnlyDescription

14 (/driver)

6.1 The RCS version number is extracted from the keyword string and joined with the manually-set
major version number. The complete version number is also written in “version.tex” for use in the
Makefile.

15 (xdriver | main)

16

17 hh

18 %% $Id: webfiles.dtx,v 2.1 2002/03/05 10:38:14 potse Exp $

19 %%

20

21 \begingroup

22 \catcode‘\$=9 ¥ ignore $

23 \gdef\xwebMajorNr{1.0.}

24 \def\setversion#1l:#2.#3:{\xdef\xwebVersion{\xwebMajorNr #3}}
25 \setversion $Revision: 2.1 $:

26 \def\setdate#1: #2/#3/#4#5#6:#7:#8;{\gdef\xwebDate{#2/#3/#4#5}}

§6. THE DOCUMENTATION DRIVER.

27 \setdate $Date: 2002/03/05 10:38:14 $;

28 \newwrite\vf \immediate\openout\vf=version.tex

29 \immediate\write\vi{\xwebVersion}\immediate\closeout\vf
30 \endgroup

31 (/driver | main)

6.2 After that, the document can be input by the driver.

32 (xdriver)

33 \begin{document}

34 \DocInput{webfiles.dtx}
35 \PrintIndex

36 % \PrintChanges

37 \end{document?}

38 (/driver)

10 §7 IMPLEMENTATION.

7 Implementation.

The implementation is still somewhat messy.
A good explanation of the vocabulary used here is given by Schrod in the implementation of the cweb
style:

Before we start with an overview of the implementation I want to explain the CWEB vocab-
ulary I use while I guide you through this document. The commonly used terms sometimes
denote two entities, but for the purpose of this style we need exact terms. I've tried to stick
to a “canonical” computer science terminology.

I distinguish two different structures in a CWEB file: The document structure and the
program structure.

A CWEB document consists of a series of sections. Within this series some sections are
especially emphasized, we call them the main sections. (They are also called starred sections,
since their corresponding CWEB tag is @*.) These main sections have a title, ordinary sections
are untitled. A table of contents may therefore list only the main sections. Note that there is no
hierarchy in the sections, they are all on the same level, i.e., they are numbered subsequently.

Each section consists of three parts: (1) the documentation part, (2) the definition part,
and (3) the program part. Each of these parts can be empty. The documentation part is
mostly text with IMTEX tags. In this text material from restricted program mode can appear.
The definition part consists of a series of either macro or format definitions. The program
part is one piece of a refinement, identified by a name (see below).

A CWEB program consists of a tree of refinements. A refinement is a list of program parts
with the same name, ordered in appearence. The root of the tree is the refinement with the
special name @c. The program text is defined by the DFS (i.e., infix-order) traversal of the
tree.

7.1 Before we start we declare some names for category codes. By declaring the underscore ‘(_)" as
letter we can use it in our macros. As this is a IN\TEX package the at sign is a letter anyhow; so we can use
the “private” plain and ITEX control sequences; and with the underscore we can make our own control
sequences (csegs for short) more readable. Since we have to restore this category code at the end of this
macro file, we save its former value in the control sequence \xwebCatUsCode. This method is better than
to use a group, not all cseqs must be defined global this way.

39 (xmain | spider)

40 \catcode‘\@=11

41 \chardef\xwebCatUsCode=\catcode ‘_ % top level macro file!
42 \catcode‘_=11 J, Catcode letter
43 \chardef\xwebCatEscape=0

44 \chardef\xwebCatOpen=1

45 \chardef\xwebCatClose=2

46 \chardef\xwebCatIgnore=9

47 \chardef\xwebCatLetter=11

48 \chardef\xwebCatOther=12

49 \chardef\xwebCatActive=13

50 (/main | spider)

7.2 Let’s identify this package against the user and in the Log file.

51 (xmain)

52 \ProvidesPackage{webfiles}

53 \begingroup

54 \typeout{LaTeX package ‘webfiles’, version \xwebVersion, \xwebDate}
55 \endgroup

56 (/main)

§7 IMPLEMENTATION. 11

7.3 The very first (alpha) version of the cweb style was a style option. The version on which the
webfiles style is based was a full style. webfiles.sty itself is an option again, and since the author
has BTEX 2¢, it has become a package. Therefore we test if a documentclass was chosen (by testing if
\section is defined).

57 (*main)

58 \ifx \section\undefined

59 \PackageError{webfiles}{‘webfiles’ is a package, not a class}{/
60 webfiles is not a document class, but only a package.

61 Please adapt your documentclass tag appropriately.

62 I.e., write \MessageBreak

63 \protect\usepackage{webfiles} instead of

64 \protect\documentclass{webfiles}.}

65 \fi

66 (/main)

12 §8 OPTIONS.

8 Options.

The package options may be used in the optional argument of the \usepackage command, or in the
optional argument of the \webfile command. In the second case, they only apply to a single web. We
keep track of the choices with logical variables and a count register, each having a global and a local
variant.

67 (xmain)

68 \newif\ifxweb_GlobalIndex \newif\ifxwebIndex

69 \newif\ifxweb_GlobalRef \newif\ifxwebRef

70 \newif\ifxweb_GlobalRagged \newif\ifxwebRagged

71 \newif\ifxweb_GlobalOC

72 \newif\ifxweb_GlobalHideFormats \newif\ifxwebHideFormats
73 \newif\ifxweb_GlobalCon \newif\ifxwebCon

74 \DeclareOption{index}{\xweb_GlobalIndextrue}

75 \DeclareOption{noindex}{\xweb_GlobalIndexfalse}

76 \DeclareOption{reflist}{\xweb_GlobalReftrue}

77 \DeclareOption{noreflist}{\xweb_GlobalReffalse}

78 \DeclareOption{raggedbottom}{\xweb_GlobalRaggedtrue}

79 \DeclareOption{flushbottom}{\xweb_GlobalRaggedfalse}

80 \DeclareOption{onlychanges}{\xweb_GlobalOCtrue}

81 \DeclareOption{allsections}{\xweb_GlobalOCfalse}

82 \DeclareOption{nocon}{\xweb_GlobalConfalse}

83 \DeclareOption{contents}{\xweb_GlobalContrue}

84 \DeclareOption{hideformats}{\xweb_GlobalHideFormatstrue}
85 \DeclareOption{showformats}{\xweb_GlobalHideFormatsfalse}
86

87 \newcount\xweb_hypertype

88 \newcount\xweb_GlobalHypertype

89 \DeclareOption{hyperref}{\xweb_GlobalHypertype=1}

90 \DeclareOption{pdftex}{\xweb_GlobalHypertype=2 \input pdfcolor}
91 \DeclareOption{nohype}{\xweb_GlobalHypertype=0}

92

93 \newcounter{xwebLopDepth} \setcounter{xwebLopDepth}{9}
94 \newcounter{xwebOutlineDepth} \setcounter{xwebOutlineDepth}{9}
95 \DeclareOption{nofiles}{\c@xwebLopDepth=-9}

96 \DeclareOption{writefiles}{\c@xwebLopDepth=9}

97 \ExecuteOptions{index,reflist,raggedbottom,allsections,%
98 contents,showformats,nohype,writefiles}
99 (/main)

§9 THE INTERFACE BETWEEN CWEAVE AND TgX. 13

9 The interface between cweave and TEX.

Here we present all tags output by cweave* in an ordered fashion. First we look at those tags which are

part of the ‘protected interface,’ ie, they are visible to a CWEB user, but he must not use them. Then we
consider the private tags, some are used in the documentation part, others are needed to typeset program
code, and there are a few tags for typesetting special characters in strings.

9.1 Some tags output by cweave are part of the protected interface even though they are not prefixed
by cweb. We’ll present them in the order they’ll arrive in the document instance.

The following table specifies in the second column if this tag takes arguments. If the entry is non-
empty, it’s either a number listing just how many arguments are expected; then usual argument passing
is used. Or it displays the context required.

\ATL #1, #2, CWEB operator: @1
(how to output non-ASCII chars in ctangle)
Arg. 1: hex code of mapped character
Arg. 2: string output by ctangle
\M 1 CWEB structure tag: start of a section
Arg. 1: section number
\N #1#2#3. CWEB structure tag: start of a section group
Arg. 1: group depth, 0 < #1
Arg. 2: section number
Arg. 3: section group name

\PB 1 restricted program mode material
Arg. 1: program code
\Y between major pieces of a program part
\B start program material
\fi CWEB structure tag: end of a section
\9 1 index entry, user defined layout

Arg. 1: text of index entry

\ATL does only appear in front of the very first section. The section number is an explicit TEX number
which might be followed by a ‘changed flag’ (see section 9.3). Note the usage of \fi, ie, each section
must open an according \if. \PB might appear within its own argument (created by restricted program
mode material in a refinement name within restricted program mode).

\9 deserves a further explanation: It is expected, though not defined, that it expands to an empty
token list. The parameter will be a sort key, actually; the real key to be typeset will appear afterwards.
So a CWEB user might index TEX as ‘@:TeX}{\TeX@>’, the index will feature it in the “T” section, not in
the “\” section.

With the exception of \PB the tags above will not appear in math mode.

9.2 The following tags might appear to be public ones, but they are, in fact, never used. That’s
because they will be placed after the \fi which terminates the last section. The tags are given with their
respective meaning in the Plain version:

\ch #1. Note which sections are changed
Arg. 1: list of section numbers, like in \U and such.
\inx Create index
\fin Create the table of refinement names
\con Create the table of contents
\vfill\end output if index and all lists were suppressed

4This information refers to CWEB 3.0.

14 §9 THE INTERFACE BETWEEN CWEAVE AND TgX.

9.3 Some tags appear only in special circumstances and may therefore be considered as private tags.
The largest part of them concern the tagging of program code, we’ll have a look at them later. First we
present the tags used in other areas.

Lists of section numbers occurs on several places: At the section start (where the list has actually
only one element), within refinement names, in the identifier index, and for cross reference purposes.
Cross references can be made at the end of a section, and in the refinement name list at the very end.
Everywhere where a section number can occur it can be followed by a tag which shows that this section
was changed by the changefile.

* tag after section number: this section is changed.

Within the identifier index we have also special tags. The identifiers are tagged like in the program
mode, ie, with \\ and \&. Remember that \9, listed above, appears also in the index.

\I #1,, start of an index entry
Arg. 1: index entry

\[#1] underlined section number in index
Arg. 1: section number

\. 1 @. index entry
Arg. 1: index entry

In the list of refinement names the entries are marked similar to the index entries. But note that \I
has no arg here.

\I start of a new refinement name

9.4 OK, now we can have a look at the large amount of tags used for tagging program code. First, we
have those which represent directly C or C++ tokens.

\? C operator: conditional expression
\AND C operator: logical and
\CM C operator: binary complement
\DC C++ operator: scope resolution
\E C operator: equivalence
and equivalence sign after refinement name on it’s definition
\G C operator: greater or equal
\GG C operator: shift right
\I C operator: not equal
\K C operator: assignment
\LL C operator: shift left
\MG C operator: pointer to struct component
\MGA C++ operator: pointer to pointer to member
\MM C operator: decrement
\MOD C operator: modulo (actually, remainder)
\NULL ‘quoted’ identifier
\OR C operator: binary or
\PA C+t operator: pointer to member
\PP C operator: increment
\R C operator: logical negation
\this ‘quoted’ identifier
\TeX ‘customized’ identifier
\V C operator: logical or
\W C operator: logical and
\XOR C operator: binary exclusive or

\Z C operator: less or equal

§9 THE INTERFACE BETWEEN CWEAVE AND TgX. 15

Other tokens have variable parts, passed as arguments.

\. 1 C string
Arg. 1: string
\) discretionary break between string parts
\& 1 reserved identifier
Arg. 1: identifier
A\ 1 “normal” identifier with more than one chars
Arg. 1: identifier
\ | 1 “normal” identifier with one char
Arg. 1: character
\C 1 C comment
Arg. 1: comment text
\MRL 1 C operator: combined binary operators
Arg. 1: operators, \K must print as ‘=’
\SHC 1 CH++ comment
Arg. 1: comment text
\T 1 numeric constants

Arg. 1: constant

\X #1: #2\X refinement name
Arg. 1: section number
Arg. 2: refinement name

)

The refinement name (sec